DALHOUSIE UNIVERSITY Department of Electrical & Computer Engineering ECED 2200 - Digital Circuits

Final Examination

Name:

Winter 2013

Student ID: _____

Question	Marks
1	10
2	10
3	10
4	10
5	10
Total	50

Marks: Total marks out of 50

- 1.- Two Boolean functions are given below, f_1 is given using the shorthand minterm form and f_2 is given using the shorthand maxterm form.
 - (i) $f_1(A, B, C, D) = \sum m_i(0, 1, 2, 3, 8, 10, 12, 14)$ (ii) $f_2(A, B, C, D) = \prod M_i(6, 7, 8, 12, 13, 15)$
 - (a) Use K-maps to find the simplest sum-of-products (SoP) expression for f_1 and the simplest product-of-sums (PoS) expression for f_2 . [6 pts]
 - (b) Find hazard-free implementations for f_1 in SoP and f_2 in PoS. [4 pts]

2	(a)	for a 4-bit shift register using D flip-flops that can perform conversion as well as serial-to-parallel conversion.	[6 pts]

- (b) In your diagram, identify:
 - i) The serial input terminal,
 - ii) The serial output terminal,
 - iii) The parallel input terminals, and
 - iv) The parallel output terminals. [4 pts]

3	(a)	Provide the state transition table for an asynchronous binary up-counter that goes through the sequence 0000, 0001, 0010,, 1110, 1111, 0000, 0001,	[2 pts]
	(b)	Draw the ripple binary up-counter in (a) using T flip-flops.	[3 pts]
	(c)	Provide the state transition table for a decade up-counter.	[2 pts]
	(d)	Build the asynchronous decade binary up-counter in (c) using T flip-flops.	[3 pts]
		Hint: Modify the counter in (b) such that it turns into a decade counter.	

4. Use JK flip-flops to design a finite state machine (FSM) that works as a 2-bit binary synchronous up-counter when its input X = 0 and as a 2-bit binary synchronous down-counter when its input X = 1.

(a) Draw the state transition diagram.	[2 pts]
(b) Build the state transition table. Include values of flip-flop inputs.	[3 pts]
(c) Find minimized logic expressions for flip-flop inputs.	[3 pts]
(d) Draw the resulting logic circuit that implements this FSM.	[2 pts]

Note: Please find flip-flop excitation tables attached in the last page.

- 5.- The following circuit contains two RS flip-flops.
 - (a) Write the logic expressions for R_A , S_A , R_B and S_B . [2 pts]
 - (b) Obtain the state transition table for the circuit. [3 pts]
 - (c) Sketch the state transition diagram for the circuit. [2 pts]
 - (d) Compare RS and JK flip-flops, relationship and advantage of one type over the other in light of the results obtained for this question and question 4 above. [3 pts]

.

Excitation Table

.

Q	Q+	R	S	J	K	T	D	
0	0	X	0	0	X	0	0	
0	1	0	1	1	Х	1	1	
1	0	1	0	X	1	1	0	•
1	1	0	- X	X	0	0	1	

Basic Boolean Identities

	Identity	Comments
1.	A + 0 = A	Operations with 0 and 1
2.	A + 1 = 1	Operations with 0 and 1
3.	A + A = A	Idompotent
4.	$A + \overline{A} = 1$	Complementarity
5.	$A \cdot 0 = 0$	Operations with 0 and 1
6.	$A \cdot 1 = A$	Operations with 0 and 1.
7.	$A \cdot A = A$	Idompotent
8.	$A \cdot \overline{A} = 0$	Complementarity
9.	$\overline{A} = A$	Involution
10.	A + B = B + A	Commutative
11.	$A \cdot B = B \cdot A$	Commutative
12.	A + (B + C) = (A + B) + C = A + B + C	Associative
13.	$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$	Associative
14.	$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$	Distributive
15.	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Distributive
16.	$A + (A \cdot B) = A$	Absorption
17.	$A \cdot (A + B) = A$	Absorption
18.	$(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$	Consensus
19.	$\overline{A+B+C+\ldots} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \ldots$	De Morgan
20.	$\overline{A \cdot B \cdot C \cdot} = \overline{A} + \overline{B} + \overline{C} +$	De Morgan
21.	$(A + \overline{B}) \cdot B = A \cdot B$	Simplification
22.	$(A \cdot \overline{B}) + B = A + B$	Simplification