DALHOUSIE UNIVERSITY Department of Electrical & Computer Engineering ECED 2200 - Digital Circuits

Final Examination

Name: _____

Winter 2015

Student ID: _____

Marks: Total marks out of 45

Question	Subject	Worth	Marks
1	Gates and Boolean algebra	8	
2	Arithmetic circuit design	8	
3	Decoders and multiplexers	7	
4	Synchronous & Asynchronous counters	12	
5	Registers	10	
Total		45	

Q1. The Boolean expression given below describes the XNOR function of variables **a** and **b**. f = ab + a'b'

(a) Synthesize the XNOR function using AND, OR and NOT gates.	[2 pts]
(b) Convert the circuit from (a) to NOR-only networks (Note: a' and b' are not available	- 1 -
(c) Using Boolean algebra to implement the function with no more than 4 NOR logics.	[2 pts]

(d) Draw the new circuit implemented with 4 NOR gates. [2 pts]

Q2. A half adder circuit has two inputs a and b, and two outputs S and Co. A full adder circuit has three inputs a, b, C_{in} and two outputs S and C_o.

(a) Design a half adder that calculate the sum of **a** and **b**. [2 pts](b) Design a full adder using two half adders to calculate the sum of \mathbf{a} , \mathbf{b} , and \mathbf{C}_{in} , [2 pts] (c) Show in 8-bit binary notation the arithmetic operation of 30+(-19). [2 pts] (d) Design a 8-bit chained adder using full adder as components. [2 pts]

Q3. (a) Implement the following Boolean functions using 8:1 multiplexers: [2 pts]

i)
$$f_1(A, B, C) = \sum m_i(0, 5, 6, 7)$$

..., $f_1(A, B, C) = \prod M_i(0, 2, C)$

ii) $f_2(A, B, C) = \prod_{i=1}^{n} M_i(0,3,6).$

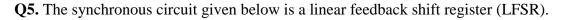
We are also told that the input combinations ABC = 100 and ABC = 111 are not of concern (don't cares) for f_2 .

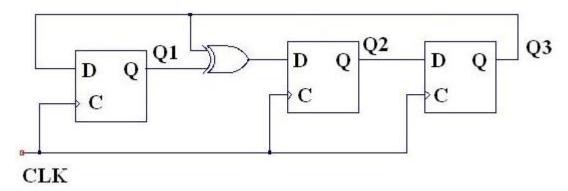
- Implement the same Boolean functions $f_1 \& f_2$ given above using 4:1 multiplexers. [2 pts] (b)
- Implement the Boolean functions below using one 3:8 decoder and three OR gates. (c) Specify all the decoder inputs. [3 pts]

i)
$$f_1(A, B, C) = \sum m_i(5, 6, 7)$$

ii)
$$f_2(A, B, C) = \overline{A} \cdot (B + \overline{C})$$

$$\operatorname{iii} f_3(A,B,C) = \overline{A} \cdot C + A \cdot \overline{B} \cdot \overline{C}$$


- Q4. A binary decade up-counter goes through the sequence 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 0000, 0001, ...
- (a) Using the standard design process for synchronous counters, show how to implement this counter using T flip-flops. [3 pts]


Include: state transition table and a drawing of the final circuit.

- (b) Check whether the counter is self-starting or not? Draw the state transition diagram including every possible state. [3 pts]
- (c) Build an asynchronous (ripple) decade up-counter by modifying a 4-stage ripple binary up-counter using T flip-flops. [3 pts]
- (d) Sketch the timing diagram of the counter built in (c) for 12 CLK periods. Assume all flip-flops were cleared during the clock cycles preceding time t=0. Include:

- The waveforms CLK_A, CLK_B, CLK_C, & CLK_D, (i.e. the CLK inputs of each flip-flop)

- The waveforms Q_A, Q_B, Q_C, & Q_D, (i.e. the outputs Q of each each flip-flop) [3 pts]

(a) Complete the next state equations (i.e. $Q1^+$, $Q2^+$, $Q3^+$), one for each stage (flip-flop). [3 pts] (b) Assuming that $Q_1Q_2Q_3 = 001$ at t = 0 (initialization). Determine the contents of the LFSR after the first, second, third, eighth clock cycles and fill in the table given below. [3 pts]

CLK	Q1	Q2	Q3	
	0	0	1	
1				
2				
3				
4				
5				
6				
7				
8				

(c) Check whether the counter is self-starting or not? Draw the state transition diagram including every possible state. [2 pts] [2 pts]

(d) What are the contents of Q1, Q2, and Q3 after clocks 97 and 168?

•

Excitation Table

*

Q	Q+	R	S	J	K	T	D	
0	0	X	0	0	X	0	0	
0	1	0	1	1	Х	1	1	
1	0	1	0	X	1	1	0	•
1	1	0	- X	X	0	0	1	

Basic Boolean Identities

	Identity	Comments
1. 2. 3. 4. 5. 6. 7. 8.	$A + 0 = A$ $A + 1 = 1$ $A + A = A$ $A + \overline{A} = 1$ $A \cdot 0 = 0$ $A \cdot 1 = A$ $A \cdot \overline{A} = A$ $A \cdot \overline{A} = 0$	Operations with 0 and 1 Operations with 0 and 1 Idompotent Complementarity Operations with 0 and 1 Operations with 0 and 1 Idompotent Complementarity
9. 10.	$\overline{A} = A$ $A + B = B + A$	Involution Commutative
10. 11. 12.	$A \cdot B = B \cdot A$ A + (B + C) = (A + B) + C = A + B + C	Commutative Associative
13. 14.	$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$ $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	Associative Distributive
15. 16.	$A + (B \cdot C) = (A + B) \cdot (A + C)$ $A + (A \cdot B) = A$	Distributive Absorption
17. 18.	$A \cdot (A + B) = A$ $(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$ $\overline{A + B + C +} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot$	Absorption Consensus De Morgan
19. 20. 21.	$\frac{A+B+C+\ldots}{\overline{A}\cdot B\cdot C\cdot\ldots} = \overline{A} + \overline{B} + \overline{C} + \ldots$ $(A+\overline{B})\cdot B = A \cdot B$	De Morgan Simplification
22.	$(A \cdot \overline{B}) + B = A + B$	Simplification