Name: _____

Q1.- A combinational circuit taking a nonnegative three digit binary number ABC as input decides whether it is a prime number (indicating it with output P = 1) and whether the sum of its two least significant digits B & C is even (indicating it with output E = 1).

- (a) Write output P in canonical sum-ofproducts (SoP) form.
- (b) Write output E in canonical product-ofsums (PoS) form.
- (c) Use Boolean identities to find the minimized SoP form for output P.
- (d) Use Boolean identities to find the minimized PoS form for output E.
- **Q2.-** Given the following function in product-of-sums (PoS) form:

$$f(A, B, C, D) = \prod M_i(1, 5, 6, 7, 8, 10, 14, 15)$$

Map the function *f* in a K-map and:

- a) Find the minimized PoS expression for f.
- b) Check if the minimized expression found in (a) is hazard-free. Justify.

If it is not hazard-free provide a PoS hazard-free expression for f.

- c) Find the minimized SoP expression for f.
- d) Check if the minimized expression found in (c) is hazard-free. Justify.

If it is not hazard-free provide a SoP hazard-free expression for f.

Q3.- Draw the circuit for the following function g

- (a) as written below using AND, OR & NOT gates (assume 2 & 3-input gates are available).
- (b) using NAND gates only (assume literal complements as well as 2 and 3-input gates are available).
- (c) using NOR gates only (assume literal complements as well as 2 and 3-input gates are available).

$$g = (\overline{A} \cdot B \cdot C) \cdot (\overline{B} + D) \cdot E + (\overline{B} + D)$$

Note: Do not use Boolean algebra or K-map simplification in any of the three parts above.

- Q4.- Design a converter that maps a 4-bit binary code into a 4-bit Gray code. The 4-bit Gray code sequence is defined as follows: 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000.
 - (a) Give the truth table.
 - (b) Find the minimized expressions for the output functions.
 - (c) Show how to implement this code converter as either a PAL or a PLA circuit, whichever you consider more appropriate. Justify your choice.

.

Basic Boolean Identities

Identity

Comments

1.	A + 0 = A	Operations with 0 and 1
2.	A + 1 = 1	Operations with 0 and 1
3.	A + A = A	Idompotent
4.	$A + \overline{A} = 1$	Complementarity
5.	$A \cdot 0 = 0$	Operations with 0 and 1
6.	$A \cdot 1 = A$	Operations with 0 and 1.
7.	$A \cdot A = A$	Idompotent
8.	$A \cdot \overline{A} = 0$	Complementarity
9.	$\overline{A} = A$	Involution
10.	A + B = B + A	Commutative
11.	$A \cdot B = B \cdot A$	Commutative
12.	A + (B + C) = (A + B) + C = A + B + C	Associative
13.	$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$	Associative
14.	$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$	Distributive
15.	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Distributive
16.	$A + (A \cdot B) = A$	Absorption
17.	$A \cdot (A + B) = A$	Absorption
18.	$(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$	Consensus
19.	$\overline{A+B+C+\ldots} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \ldots$	De Morgan
20.	$\overline{A \cdot B \cdot C \cdot} = \overline{A} + \overline{B} + \overline{C} +$	De Morgan
21.	$(A + \overline{B}) \cdot B = A \cdot B$	Simplification
22.	$(A \cdot \overline{B}) + B = A + B$	Simplification