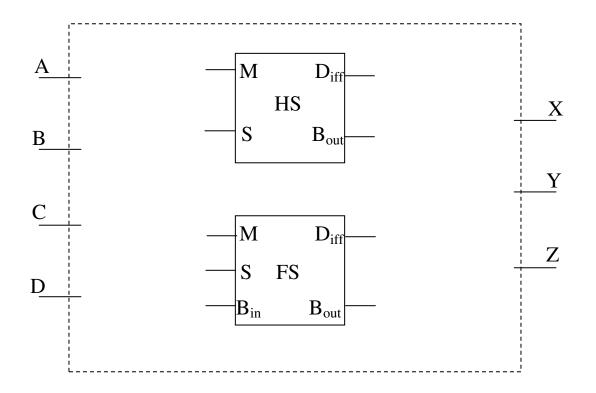

ECED2200 – Digital Circuits

Name:


Student ID:

Q1.- A combinational circuit taking a nonnegative three digit binary number ABC as input decides whether it is an even number or the two most significant digits A & B are equal (indicating it with output E = 1) and whether the sum of its two least significant digits B & C is odd (indicating it with output O = 1).

- (a) Write output E in canonical sum-of-products (SoP) form. [3 pts]
- (b) Write output O in canonical product-of-sums (PoS) form. [3 pts]
- (c) Use Boolean identities to find the minimized SoP form for output E. [3 pts]
- (d) Use Boolean identities to find the minimized PoS form for output O. [3 pts]
- **Q2.-** The logic box shown below performs the substraction of two 2-bit numbers $N_1 = AB$ (minuend) & $N_2 = CD$ (subtrahend). The result (difference) is a three bit number D = XYZ.

- (a) Build the truth table for the functions X, Y & Z. [3 pts] *Note*: Values of D result in 3-bit 2's complement.
- (b) Use K-maps to minimize the functions X, Y & Z in sum of products form. [5 pts]
- (c) You are given one half subtractor and one full subtractor as shown below. Complete the diagram to obtain the difference D = XYZ of $N_1 - N_2 = AB - CD$. M - minuend, S - subtrahend, D_{iff} - difference, B_{in} - borrow-in, B_{out} - borrow-out [4 pts]

[4 pts]

Q3.- Draw the circuit for the following function *g*

- (a) as written below using AND, OR & NOT gates (assume 2 & 3-input gates are available). [2 pts]
- (b) using NAND gates only (assume literal complements as well as 2 and 3-input gates are available). [3 pts]
- (c) using NOR gates only (assume literal complements as well as 2 and 3-input gates are available). [3 pts]

$$g = \left(\overline{(A+B) \cdot \overline{C}} + B\overline{C}D \right) \cdot E \cdot (A+B)$$

Note: Do not use Boolean algebra or K-map simplification in any of the three parts above.

Q4.- The function *f* is given by

$$f(A, B, C) = \sum m_i(0, 5, 6, 7)$$

(a) Implement this function f using an 8:1 multiplexer.

(b) Implement the same function f using a 4:1 multiplexer. [4 pts]

.

Basic Boolean Identities

Identity

Comments

1.	A + 0 = A	Operations with 0 and 1
2.	A + 1 = 1	Operations with 0 and 1
3.	A + A = A	Idompotent
4.	$A + \overline{A} = 1$	Complementarity
5.	$A \cdot 0 = 0$	Operations with 0 and 1
6.	$A \cdot 1 = A$	Operations with 0 and 1.
7.	$A \cdot A = A$	Idompotent
8.	$A \cdot \overline{A} = 0$	Complementarity
9.	$\overline{A} = A$	Involution
10.	A + B = B + A	Commutative
11.	$A \cdot B = B \cdot A$	Commutative
12.	A + (B + C) = (A + B) + C = A + B + C	Associative
13.	$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$	Associative
14.	$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$	Distributive
15.	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Distributive
16.	$A + (A \cdot B) = A$	Absorption
17.	$A \cdot (A + B) = A$	Absorption
18.	$(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$	Consensus
19.	$\overline{A+B+C+\ldots} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \ldots$	De Morgan
20.	$\overline{A \cdot B \cdot C \cdot} = \overline{A} + \overline{B} + \overline{C} +$	De Morgan
21.	$(A + \overline{B}) \cdot B = A \cdot B$	Simplification
22.	$(A \cdot \overline{B}) + B = A + B$	Simplification