1. Synthesize logic circuits to realize the following functions as written (i.e. no logic simplification), use any of the gates seen in classes:

(a)
$$\overline{A \cdot (A+B)}$$
,

(b)
$$(\overline{A+B} + A \cdot B) \cdot \overline{A+B}$$

(c)
$$\overline{(A+B)\cdot\overline{A\cdot B}}\cdot\overline{A\cdot B}$$

(d)
$$(\overline{A+B}) \cdot \overline{A \cdot B} + A \cdot B$$
.

2. Use truth tables to prove the following Boolean theorems:

(a)
$$A \cdot (A+B) = A$$
,

(b)
$$A+B\cdot C = (A+B)\cdot (A+C)$$
.

(c)
$$A + A \cdot B = A$$
,

(d)
$$A + (B+C) = (A+B)+C$$
.

Example: (a)

A+B	A(A+B)
0	0
1	0
1	1
1	1/
	A+B 0 1 1

$$A \cdot (A + B) = A$$

3. Use Boolean theorems to prove the following identities:

(a)
$$A \cdot (\overline{A} + B) = A \cdot B$$

(b)
$$A \cdot \overline{B} \cdot C + A \cdot B \cdot C = A \cdot C$$

(c)
$$(A+B)(\overline{A}+C)+B\cdot C = A\cdot C+\overline{A}\cdot B$$

(d)
$$(A+C)(A+D)(B+C)(B+D) = A \cdot B + C \cdot D$$

- 4. Use Boolean algebra to simplify the following expressions:
 - (a) $\overline{A} B\overline{C} + \overline{A} BC + A\overline{B}\overline{C} + A\overline{B}C$
 - (b) $\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}C\overline{D}$

4. (a)
$$\overline{A}B\overline{C} + \overline{A}BC +$$

5. Consider the functions

$$f_1(A,B,C,D) = \overline{A}BC + (\overline{A}+B+D)(AB\overline{D}+B)$$

(a) Find the complements of the functions above and simplify using De Morgan's laws.

$$f = \overline{ABC} + (\overline{A} + B + D)(AB\overline{D} + B)$$

$$f = \overline{ABC} \cdot (\overline{A} + B + D)(AB\overline{D} + B)$$

$$f = (A + \overline{B} + \overline{C})(\overline{A} + B + D) + \overline{ABD} + B$$

$$f = (A + \overline{B} + \overline{C})(\overline{ABD} + \overline{ABD} \cdot \overline{B})$$

$$f = (A + \overline{B} + \overline{C})(\overline{ABD} + \overline{BBD} \cdot \overline{B})$$

$$f = (A + \overline{B} + \overline{C})(\overline{ABD} + \overline{BBD} \cdot \overline{B})$$

(b) Synthesize the resulting functions using AND, OR and NOT gates.

- 6. (a) Write in binary the following decimals: 6_d, 14.625_d, 27_d, 50.3125_d
 - (b) Write in decimal the following binaries: 00101_b , 101.1_b , 110101_b , 1011.011_b

(a) 6d =	01106			4 1
14.625	= 0111	0.10	Ь	
270=	01101	116		
	25d = 01	10010	01016	
	b = 5d			
101.1	b = 5.9	d Ci	unsi	aned)
11010) 16 = 6	50=	3d Lif	unsigned)
1011.	. 011 6 =	11.3	129	

7. Express the following decimal numbers using 8-bit signed 2's complement notation:

- $i) -25_d$,
- ii) 130_d
- iii) 17_d,
- iv) -100_{d} .