
Mixed Logic
Mixed logic is a gate-level design methodology that is widely used in industry. It allows a
designer to separate what behavior is desired from how it is realized. It also supports self-
documenting gate level circuits.

Mixed logic is based on the key observation of DeMorgan’s theorem: that logical operations
have equivalencies when their inputs and outputs are inverted. DeMorgan’s Square shows the
equivalencies of the four basic gate types.

Inverting the output of the gate moves horizontally in the square. Moving vertically is
accomplished by inverting all gate inputs (turning the truth table upside down). Note that each
gate has two DeMorgan equivalent gate symbols. While it may seem counterintuitive to draw an
AND gate as an OR body with inverted inputs and an inverted output, this variation makes
mixed logic design possible.

Consider the example logic circuit using traditional gate symbols.

This circuit diagram includes both the specification and implementation of the designed logical
function. The desired function might be:

DCBAOut ⋅+⋅=

Or it might be that the specified NAND and NOR gates satisfied an implementation requirement
that is independent of the desired function. If it is necessary to reimplement the function using
only NOR gates and inverters, the design process is error prone and often yields confusing and
non-optimal implementations.

A mixed logic approach exploits the symbol variation provided by DeMorgan’s Theorem to
support three design rules:

1. All logical operations in the desired logical expression become gate bodies in the circuit.

2. All complements in the desired logical expression become bars in the circuit.

3. All bubbles in the circuit are paired so they cancel out. One bubble is attached to each bar.

Using mixed logic design, the desired logical function to be read from the circuit regardless of
implementation. Moving bubbles around allows an implementation to be changed to meet a
specific technology requirement.

To illustrate mixed logic design, consider the following logical function.

)()(DCBAOut +⋅+=

The form of the expression is chosen based on the application requirement and is independent of
implementation. This expression can be represented graphically.

While not an implementation, this circuit shows the logical combination of the inputs. The bars
represent where an inversion of the signal is required. This basic structure is unchanged
regardless of the gate types used to implement it.

To realize a specific implementation, bubbles are added in pairs along wires until the design gate
type is achieved. To produce the required inversion at bars, a single bubble is also left at either
the front or back of each bar. When there are no desirable gate bodies to attached a needed
bubble, a buffer body is first added and then transformed into an inverter. One implementation of
the function employs the gate types used in the first example.

Since bubbles are added in pairs, they can be ignored when considering a circuit’s behavior.
Bubbled bars, while having no physical manifestation, indicate that the unbalanced bubble it
matches creates an actual inversion of the signal. Several buffer bodies are needed to provide
attachment points for bubbles while maintaining desired gate types. These buffers become
inverters that do have a physical manifestation in the implementation. Note that this design is

identical to the first example, but for using DeMorgan equivalent gate symbols. Reimplementing
using only NOR gates yields a similar circuit but for the gate type used. Only bubbles and
buffers are rearranged.

Here’s another example.

Given the circuit, the desired logical behavior can be unambiguously extracted.

))(())((DCBCBAOut +⋅⋅⋅+=

The fact that this implementation includes only NOR gates neither changes nor distorts the
behavior. Note the common subexpression (B or NOT C) used in two places in the circuit. When
bubbles are added to a wire that is used multiple places (fanout > 1), multiple bubbles on the
consumer end must be added to match the bubble on the producer end. This can be seen when
this behavior is reimplemented using only NAND gates.

In summary, mixed logic design:

1. Decouples the behavior of a circuit from its implementation.

2. Supports self documenting circuits.

3. Provides a simple process to reimplement a circuit using different gate types.

