1) Schematic Design

- Download Quartus project and setting files: Lab_Template.rar or Lab_Template.zip Extract ALL files in the folder to your working directory.
 - Save a copy of the project templates somewhere for your future labs.
 - Start **Quartus**, then **open project** -> select the **Tut_1.qpf** file in your working directory. Double click on the Tut_1 file to open the schematic template for your design entry.

- 1. Project Navigator
- 2. Command Bar
- 3. Icon Bar
- 4. Workspace Toolbar

For most of the laboratory experiment the "primitive" symbols will be used. The orthogonal node tool allows the user to place a virtual wire between different inputs and outputs.

- 5. Workspace
- 6. Taskbar

By clicking on the "play" button the design will go though the stages to create the programming document.

2) Simulating a Design

1. Launch ModelSim

File Edit View Project Assignments Processi	ng To	ols Window Help		
🗋 🐱 🖶 🗲 🖺 💼 🤊 🤆 🛛 Tut_1		Run Simulation Tool	•	RTL Simulation
Project Navigator 🍌 Hierarchy 🔹 🤉 🖓 🗗 🗙	n 🔁	Launch Simulation Library Compiler		😪 Gate Level Simulation
Entity/instance	8	Launch Design Space Explorer II		
Cvclone V: 5CSEMA5F31C6		Timing Analyzer		
🔛 Tut_1 👛		Advisors	•	
		Chip Planner		
	:: 🕎	Design Partition Planner		×
		Netlist Viewers	•	AND2
		Cignal Tan Logis Analyzor		P

2. ModelSim should now be launched. Locate the "**Library**" window. Locate the "**work**" file (it should be the top file). Double click on it to see its contents and double click "tut_1".

ModelSim - INTEL FPGA STARTER EDITION 2020.1							
File Edit View Compile Simulate Add Wave Tools Layout Bookmarks Window Help							
	5 <u>**</u> 2 '' ♥♥ • 6490 ⊡- N	1 6 1 4	[Ef] 200 ns	. et et et iv 🥵 💹			
<u>]</u> 3• • →€ • ∰• Search:] 3+ - →乞 - 詩+ Search: 📃 連続 券] 🔍 🤍 🔍 😫 🤽						
Library		bjects		Wave - Default			
▼ Name	Type 🔺 🖲 Na	me [🔄	■ Now 対 ト	\$	Msgs		
- work	Library ! 🖿	ww_SW	UUUU Signa	1/sw(1)	U		
+ E] tut_1	Entity 🕴 🛨	ww_LED	UUUU Signa	4 /tut 1/SW(0)	- U		
+ gate_work	Library 🕛 🛨	ww_KEY	UUUU Signa	Outputs	×		
	Library	ww_devpor	U Signa	(hut 1/) ED(3)	Ε.		
+ 220model_ver	Library :	ww_devoe	U Signa	/bit_1/ED(3)	u .		
• altera	Library	ww_devdrn	U Signa	/wt_1/ccb(2)	o a		
+altera_Insim	Library :	ww_CLK_50	U Signa	/wt_1/LED(1)	0		
+ altera_Insim_ver	Library :	ww_CLK2_50	U Signa	/tut_1/LED(0)	<u> </u>		
+ It altera mf	Library	vcc	1 Signa				

3. In the center column should be an "**Objects**" window. Select the ones you used for your schematic (e.g. SW0, SW1, LED1...) and click "**Add Wave**".

4. The set of waves should now be in the simulation window. Now values must be assigned to them so that a simulation takes places. To do this we make each input a clock cycle with different periods.

5. Before we simulate the design, we must ensure that the simulation length is adequate.

6. By clicking on different time points in the simulation, the values of the inputs and outputs can be read off

3) Implementation

1. Connect the power of the De1-SoC board; connect the USB from the DE1-SoC board to the computer. Turn on the board.

2. In the "Tasks" bar select "Program Device (Open Programmer)"

3. Make sure "DE-SoC[USB-1] is correctly recognized, and Mode is JTAG. Use "Auto Detect" to detect the board, and then add the Tut_1.sof program file from the "output" folder of your project.

4. Click "Start" to program the board.

4) Laboratory Exercises

With an understanding of the design, simulation, and implementation of the binary several exercises can be done. There are two exercises, one requires repeating the AND2 design with other primitive gates and the other is a binary to seven segment display.

a) Logic Gates

Repeat the steps taken with the AND2 gate with the XNOR, XOR, BAND2 gates and record the results.

b) Seven Segment Display

The two white square boxes on the top left of the Binary Explorer is a seven-segment display. Each segment of a seven-segment display is a small light-emitting diode (LED), and - as is shown below - a decimal number is indicated by lighting a particular combination of the LED's elements. Binary-coded-decimal (BCD) is a common way of encoding decimal numbers with 4 binary bits:

88888	Decimal digit	0	1	2	3	4	5	6	7	8	9
88888	BCD code - D3 D2 D1 D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

In the second part of this lab, a test circuit will be constructed to drive the 7-sgment display using a 4-bit BCD signal. Press "Add Symbol" and chose the "others" section, then press "maxplus2" and pick the 74248 chip. Connect the four switches and the outputs to their respective segments as shown. Please note the segments are active-low (have common anode, a '0' turns the LEDs on), so seven inverters need to be added for the 7-segment display. Then compile and implement (no need to simulate) the design and record the results.

Digital Circuits - ECED 2200 Tutorial 1 Observations

Student Names: _____

B00_____

AND Gate Truth Table:

А	В	Y
0	0	
0	1	
1	0	
1	1	

XOR Gate Truth Table:

А	В	Y
0	0	
0	1	
1	0	
1	1	

XNOR Gate Truth Table:

А	В	Y
0	0	
0	1	
1	0	
1	1	

BAND2 Gate Truth Table:

А	В	Y
0	0	
0	1	
1	0	
1	1	

Switches	Display	Switches	Display
$SW_4 SW_3 SW_2 SW_1$	(colour the light-up	$SW_4 SW_3 SW_2 SW_1$	(colour the light-up
	segments)		segments)
0000		0110	d d d d d
0001	d e d e h	0111	f g b a c d oh
0010	f g b e c oh	1000	f g b a c d oh
0011	f g b c c oh	1001	f g b e c d oh
0100	f g b a c d oh	1010 (what happens @ 10?)	f g b a c d oh
0101	f g b c c c c c c c c c c c c c c c c c c	1011	f g b e c d oh

