
ECED 4260 – IC Design and Fabrication

Department of Electrical and Computer Engineering

Dalhousie University, Halifax, NS, Canada

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

CLB CLB

CLB CLB

Switch
Matrix

COURSENOTES OUTLINE

Section I Design

0. Introduction

1. Review of Classical Sequential Logic Design

2. VHDL and Simulation

3. Digital Design and Applications

4. Design of Arithmetic Circuits

5. Digital System Testing

Section II Fabrication

1. Basic Transistor Characteristics

2. Processing Technologies

1

Section I. Design

0. INTRODUCTION

Classification of Integrated Circuits by Complexity

ERA DATE COMPLEXITY

(# of logic blocks)

Single 1959 <1

transistor

Unit logic 1960 1

Multi-function 1962 2-100

MSI 1967 100-1,000

LSI 1972 1,000-20,000

VLSI 1980 20,000-500,000

ULSI 1985 >500,000

Note: Boundaries are not artificially created. Crossing boundaries

required new technologies and new design methodologies.

There are two common measures of the complexity:

1. Scale of integration;

2. Minimum feature size.

The number of devices per chip is determined by the

minimum line widths that can be defined in the

fabrication process.

2

0.1 Factors Influencing the IC Industry

0.1.1 Moore’s Law

In 1979 Gordon Moore of Intel made the observation that

chip complexity (i.e. the number of transistor per chip) was

growing at an exponential rate with time.

3

0.1.2 Changes in Fabrication

Detailed understanding of the fabrication processes

has led to better controlled and more repeatable

processing. This knowledge has created “silicon

foundries” companies that are solely concerned with

manufacturing ICs, not necessarily the design of such

ICs.

1970’s – design and manufacturing was within the

same company

- high volume, general purpose devices

1980’s – design and manufacturing separate (silicon

foundries)

- low volume special purpose ICs

0.1.3 Faster Design

Faster designs are possible if the designer works at a

higher level of design. This is possible with the use of

standard cells – that is the creation of a catalog of a

well defined library of cells. The designer then carries

out his design with these cells. Design tools such as

place and route automatically make the geometrical

layout required for a IC design.

4

0.1.4 Faster Turnaround

With a short implementation time many systems can be

economically produced in silicon. With the introduction of

gate arrays, which require fewer final processing steps the

time from design to a completed IC is greatly reduced.

0.1.5 Lower Manufacturing Costs

With lower manufacturing costs it becomes economical to

produce ICs. Lower manufacturing costs are a result of:

- higher yields, i.e. more of the manufactured ICs work.

- gate arrays, with fewer specialized processing steps.

-multi-project chips, where several designs are produced on

a single wafer. The mask costs per design are shared

amongst many designs.

- large wafers, more die per wafer

5

0.2 Economic Consideration

For the development of an integrated circuit the

major areas of cost are:

• development costs

- engineering and overhead costs

- CAD tools can help reduce engineering time, and

hence reduce costs. CAD tools are essential to

carry out large designs

• mask costs

- each photolithography step requires a mask. The

number of masks may vary from 13 or higher to 6 (for

a typical 2 metal gate array process)

- each mask can cost in the neighborhood of 2 to 3

thousand dollars

6

• wafer and processing costs

the cost of the wafer and the processing cost involve several

factors. The following table itemizes some of these costs

Item Per Wafer Per Die
Wafer Fabrication

Blank wafer x1

Wafer processing x2

Wafer probe x3

Wafer sawing x4

Die attach, bonding x5

Packaging x6

Final test x7

probe – fraction of good die based on wafer probe test

package – fraction of good die based on final die tests on

packaged die

N = number of die per wafer

packageprobe

xx
N

xxxxx
chipCost



1
/ 76

54321 


















7

Cost reduction can be achieved by

• smaller feature size – this means more die for a given

wafer (yield also increases)

• larger wafers – more die for essentially the same

processing effort

Originally 3 inch wafers (75mm), now 6 inch wafers

(150mm) are the industry standard.

• careful processing can have a great impact on yield –

purity of the clean rooms, experience and quality of the

staff

Package costs will determine a large portion of the final IC

cost. Some typical package cost are:

Plastic DIP 8 pin 0.032

Plastic DIP 64 pin 0.70

Ceramic DIP 64 pin 4.95

Ceramic PGA 68 pin 6.40

8

0.3 Yield

Yield is the percentage of die that meet the performance

specifications. Yield decreases as size increases

The following factors will influence the yield

dust particles

crystal defects

mask defects

alignment errors at successive masking steps

parameter variations in the process (these are called soft

faults)

9

Reference: Poisson Distribution

A simple fault model is to assume that defects are uniformly

distributed over the surface of the wafer. The average defect

density is D where

D is the number of defects /cm2

For dA sufficiently small

Prob{1 defect in dA} = D dA

Prob{0 defect in dA} = 1-D dA

i.e. Prob{2 or more defects in dA} = 0

If we assume the probability of a defect in dA is independent

of the defects in A

Prob{0 defects in A+dA}=Prob{0 defects in A} x

Prob{0 defects in dA}

Area A
Area dA

10

Prob{0 defects in A}

= Prob{0 defects in A+dA}- Prob{0 defects in A}

dA

=Prob{0 defects in A}x [Prob{0 defects in dA}-1]

dA

=- Prob{0 defects in A}x D dA

dA

dProb{0 defects in A} = -D dA

Prob{0 defects in A}

Prob{0 defect in A} = e -D dA

Typical values are D of 2 defects /cm2

Prob{0 defect in a die 1cm x 1cm} = e -2 = 0.135

Prob{0 defect in a die 0.5cm x 0.5cm} = e -1/2 = 0.606

dA

d

11

The Poisson Distribution is more pessimistic than

experience indicates. Other yield models that are more

accurate are:

1) Seed’s model

Seed’s model is used for yields less than 30%.

2) Murphy’s model

Murphy’s model is used for yields that are greater than

30%.

3) Price’s model

Current research is concerned with determining better

models to predict yield. One approach is to partition the die

into different regions i.e. interconnect areas, active areas

and apply different yield models to each area.

ADeY 

2

1







 




AD

e
Y

AD

AD
Y




1

1

12

0.4 MOSFET Technology

MOS technology is the dominant technology for large scale

integration. The advantage of MOS technology over bipolar are:

1) Higher device density

30x TTL

5x I2L

Individual devices are smaller

2) Can use dynamic circuits which leads to simpler circuits

3) MOS fabrication is less critical

4) MOS scales better – speed improves as device dimensions are

reduced (better than bipolar)

5) More flexible technology – both analog and digital circuits as

well as memory devices can be built

6) Lower power

There are some disadvantages to MOS technology when

compared to bipolar technology

1) Slower than bipolar by a factor of 2

2) Limited current driving capability – not easily used to drive

high capacity or low impedance loads

In addition to bipolar technology other viable competitors are

BiCMOS and GaAs. BiCMOS is the technology that is growing

most rapidly and may become the dominant technology.

13

1. Review of Classical

Sequential Logic Design

1.1 Introduction to Combinational
Logic

1.2 Boolean Algebra

1.3 Mixed Logic

1.4 Algebraic Specification of
Combinational Logic

1.5 Memory Elements

1.6 Synthesis Procedure

1.7 Introduction to Programmable
Logic Devices (PLDs)

14

1.1 Introduction to

Combinational Logic

15

1.1 Introduction to

Combinational Logic (cont’d)

Logic gates: single input

Black box
Input Output

A F1 F2 F3 F4

L L L H H

H L H L H

What are these functions?

16

1.1 Introduction to

Combinational Logic (cont’d)

Logic gates: Two input

Black boxInput
Output

What are these functions?

A B F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

L L L L L H

L H L L L H

H L L L H H

H H L H L H

17

1.1 Introduction to

Combinational Logic (cont’d)

Logic gates: Multiple input

Black box
F

What are these functions?

...
If X1=X2=...=XN=H, then F=H; otherwise, F=L.

X1
X2

XN

If X1=X2=...=XN=L, then F=L; otherwise, F=H.

If X1=X2=...=XN=H, then F=L; otherwise, F=H.

If X1=X2=...=XN=L, then F=H; otherwise, F=L.

If an odd number of Xi are H, then F=H; otherwise, F=L.

If an even number of Xi are H, then F=H; otherwise, F=L.

18

1.1 Introduction to

Combinational Logic (cont’d)

Remarks

• After all signals have stabilized, the

present output signals are entirely

determined by the present input

signals

• Combinational logic has no memory

of past inputs

• Combinational logic can always be

implemented as a network of basic

logic gates

• Typically there are no signal paths

that loop back on themselves.

19

1.1 Introduction to

Combinational Logic: (cont’d)

Combinational
Logic

...

X1
X2

XN

...

Y1
Y2

YM

Time diagram:

X1---XN

 Y1---YM

20

1.1 Introduction to

Combinational Logic

Example: Design a 3-input NXOR gate using only
NOT, AND and OR gates.

Behavior:

Truth Table:

X1 X2 X3 F

L L L H

L L H L

L H L L

L H H H

H L L L

H L H H

H H L H

H H H L

x1 x2 x3

F

21

1.2 Boolean Algebra

A)There is a set S of possible values.

Set S must contain at least two special

values, which are denoted by 0 and 1.

B) There are two binary operations,

 and +, that can be applied to pairs of

elements from S to produce elements

from S.

C) Duality: the dual of Boolean

equation is the equation obtained by

interchanging all ’s and +’s, and

interchanging all 0’s and 1’s.

Principle of duality: A Boolean equation

is true if and only if the dual Boolean

equation is true.

Basic Boolean Identities

22

23

1.3 Mixed Logic

• Draw backs of entirely positive or
negative logic conventions:

– The rules for synthesizing and
analyzing multiple level NAND/NOR
networks from AND/OR networks are
complicated

– It is difficult sometimes to read off
Boolean equations from a circuit
diagram that uses only positive logic

– Mixed logic is the practice of using
both positive and negative signal
encoding on the same circuit diagram.

– Mixed logic is also called “direct
polarity indication”

– If used properly, mixed logic can
improve the readability of circuit
diagrams.

24

1.3 Mixed Logic: Main Ideas

• The shape of a gate symbol

should reflect the logical

function

• Bubbles are used on all inputs

and outputs to indicate how

Boolean 0’s and 1’s are encoded

using physical L’s and H’s

– No bubble positive logic

– Bubble  negative logic

25

1.3 Mixed Logic: Notations

Logic

signal

Positive

logic

Negative

logic

A A.H A.L

B B(H) B(L)

C C C/

D .D H .D L

26

1.3 Mixed Logic:

AND gates:

A.H

B.H
C.H

A(H)

B(H)

C(L)

A(L)

B(L)

C(H)

A.H

B.L

C.L

C=A.B

OR gates:

A.H

B.H
C.H

A(H)

B(H)

C(L)

A(L)

B(L)

C(H)

A.H

B.L

C.L

C=A+B

27

1.4 Algebraic Specification of

Combinational Logic

• Definitions

– A literal is a variable or its

complement form

– A minterm of n variables is

product of n literals in which each

variable appears exactly once in

either true or complement form

– A maxterm if n variable is a sum

of n literals in which each

variable appears exactly once in

either true or complement form.

28

1.4 Algebraic Specification of

Combinational Logic

X1 X2 X3 F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Mi

0

1

2

3

4

5

6

7

X1 X2 X3 F

L L L L

L L H H

L H L H

L H H L

H L L H

H L H L

H H L L

H H H H

1). Boolean Function Truth Table

2) As a sum of minterms:

3) As a product of maxterms

 F X ,X ,X =m +m +m +m1 2 3 1 2 4 7

= X X X + X X X +X X X +X X X11 2 3 2 33 2 1 1 2 3

F (x1, x2, x3) = M0 * M3 * M5 * M6

)321)(321)(321)(321(XXXXXXXXXXXX 

29

1.4.1 Simplification of

Boolean Functions

• Motivation:

– Simpler circuit, fewer gates, save
money

• Definition

– Implicants: a group of 2n adjacent 1’s in
a k-map.

– Prime implicant: an implicant that
cannot be doubled in size by applying
the adjacency theorem

– Minimum cover: smallest set of prime
implicants that covers all the 1’s or 0’s

– Minimum S.O.P: a sum of products that
corresponding to a minimum cover of
the 1’s

– Minimum P.O.S: a product of sums that
corresponds to a minimum cover of the
0’s

30

1.4.2 Karnaugh Maps

– A Karnaugh Map is a binary truth

table in which the function values

are arranged to facilitate the

visual detection of of logical

relationships and therefore the

manual application of the laws

and theorems of Boolean Algebra

– Find the F of following:

1 0

1 1

0 1

0 0

00

01

11

10

0 1
A

BC

31

1.4.2 Example 1.3

Design a two-level combinational circuit that

converts from binary coded decimal(BCD) to

excess 3 code

A B C D W X Y Z

0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 1 0

8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 1 0 0

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

00 01 11 10

00

01

11

10

AB
CD

00 01 11 10

00

01

11

10

1 1 1

0 0 0

1 1

0 0

AB
CD

00 01 11 10

00

01

11

10

0 1 0

1 0 1

1 0

1 0

AB
CD

00 01 11 10

00

01

11

10

1 1 1

0 0 0

0 0

1 1

AB
CD

W X

Y Z

32

1.4.2 Example 1.3

Design a two-level combinational circuit that

converts from binary coded decimal(BCD) to

excess 3 code

A A

B B

C C

D D

X

Y

D Z

B
C

B

B
D

C
D
C
D

C
D

  

W=

X=BC+BD+BCD

Y= C+D C+D

Z=D

33

1.5 Memory Elements:

Latches

SR latches:

JK Flip-Flop:

D Flip-Flop:

34

1.5 Sequential Logic:

Remarks

• After all signals have stabilized,
present output signals are
determined by both the present and
past input signals

• Circuit has closed loops with
implement memory elements.

• Two class of sequential logic:

– Synchronous sequential logic: a timing
signal is used.

– Asynchronous sequential logic: no
timing signal is used. The memory
elements are free to change state
immediately after input signals change

35

1.5 Sequential Logic:

Remarks (cont’d)

• General structure of a sequential

circuit:

Combinational

Logic

INPUT OUTPUT

Memory

Elements

Present

 State

Next

 State

Timing signal

(if synchronous)

36

1.5 Sequential Logic:

Special Classes

Next state

logic

Memory

Elements

Next State

Clock

Present State

Next state

logic

Memory

Elements

Next

State

Clock Present

State

Output

Logic

Input
Output

Next state

logic

Memory

Elements

Next

State

Clock Present

State

Output

Logic

Input
Output

37

1.5 Sequential Logic:

Example 1.4

+

X: input

A, B, states

Q =QK+QJ

+

+

A =A*(XA)+AX

B =B(X B)+BX

Z=B



38

1.5 Sequential Logic:

Example 1.4

+

X: input

A, B, states

Q =QK+QJ

+

+

A =A*(XA)+AX

B =B(X B)+BX

Z=XB+XA+XAB



39

1.5 Sequential Logic:

Remarks

• Moore outputs: depend on

present state only

• Mealy outputs depend on

present state and input

40

1.6 Synthesis Procedure

• From the behavior specification
derive a symbolic state table

• Reduce the state table by merging
equivalent states

• Find a promising state assignment

• Construct the binary state table

• Find minimum flip-flop input
functions

• Find minimum output functions.

• Draw the complete schematic
diagram

• Verify the design using simulation
and /or analysis

41

Example 1.5: Design a Mealy

Machine

• Input X and output Z

• Output Z=1 whenever either of

the sequences 110 or 0010 has

just been observed. At all other

times Z is set to 0. Note that the

machine does not reset once one

of the two sequences is

detected.

42

Example 1.5 Step1: Derive the

Symbolic State Table

s0

s4s1

s2

s3

s5

s6

s7

1/
0

1/
0

0/
1

0/0

0/0

1/0

0/1

reset

0/0

1/
0

1/
0

0/0

1/0

0/0

1/0

1/0

0/0

43

Example 1.5 Step1: Derive the

Symbolic Table

Present

state

Next state Output, Z

State X=0 X=1 X=0 X=1

S0 s4 S1 0 0

S1 S4 S2 0 0

S2 S3 S2 1 0

S3 S5 S1 0 0

S4 S5 S1 0 0

S5 S5 S6 0 0

S6 S7 S2 1 0

S7 s5 s1 0 0

44

Example 1.5 Step2: Reduce

the State Table

S1

S2

S3

S4

S5

S6

S7

S0 S1 S2 S3 S4 S5 S6

Equivalent state: same next state, same output

S2=s6 iff s3=s7

S3=s4=s7

45

Example 1.5 Step2: Reduce

the State Table

Present

state

Next state Output, Z

State X=0 X=1 X=0 X=1

S0 S3 S1 0 0

S1 S3 S2 0 0

S2 S3 S2 1 0

S3 S5 S1 0 0

S5 S5 S2 0 0

Draw the reduced state diagram…

46

Example 1.5 Step3: Find a

Promising State Assignment

• Heuristic rules--states which

satisfy the following constraints

should be given adjacent binary

assignments:

– 1. States that have the same next

state for a given input

– 2. States that are the next states of

the same state

– 3. States that have the same

output for the same input.

47

Example 1.5 Step3: Find a

Promising State Assignment

– States that have the same next

state for a given input

• {s0,s1,s2} {S3,S5} x=0

• {s0,s3} {s1,s2,s5} x=1

– states that are the next state of the

same state

• So{s3,s1} S1{s2,s3} s2{s2,s3}

• S3{s1,s5} s5{s2 s5}

– States that have the same output

for the same input.

• X=0 {s0 s1 s3 s5}

• X=1 {s0,s1,s2,s3,s5}

48

Example 1.5 Step3: Final

State Assignment

s0

s1

s2

s5 s3

00

01

11

10

0 1
A

BC

Final state assignment

State A B C

S0 0 0 0

S1 0 0 1

S2 1 0 0

S3 1 1 0

S5 1 0 1

49

Example 1.5: Step4: Construct

the Binary State Table

Present Next State output

State,ABC X=0 X=1 X=0 X=1

000 110 001 0 0

001 110 100 0 0

100 110 100 1 0

110 101 001 0 0

101 101 100 0 0

50

Example 1.5 Step5,6: Find

Minimum Flip-flop Input &

Output Functions

00 01 11 10

00

01

11

10

1 1 0 0

1 0 0 0

0 0

XA
BC

B+

00 01 11 10

00

01

11

10

0 1 0 0

0 0 0 0

0 0

XA
BC

Z

00 01 11 10

00

01

11

10

0 0 0 1

0 1 0 0

1 1

XA
BC

C+

00 01 11 10

00

01

11

10

1 1 1 0

1 1 1 1

1 0

XA
BC

A+

+A =XAC+BX

B+=XA+XBC

51

Example 1.5 Step7: D Flip-

Flop Implementation

52

Example 1.5: Step7: J-K Flip

Flop Implementation

=QJ+QKQ


JA: Set A=0

choose 1

JB: Set B=0

choose 1

JC: Set C=0

choose 1

KA: set A=1

choose 0

KB: set B=1

choose 0

KC: set C=1

choose 0

A

=X+C

K =XB

A
J

B

=XC+XA

K =1

B
J

C

=B+XA

K =X+A

C
J

53

Example 1.5: Step7: J-K Flip

Flop Implementation

54

Example 1.5 Step8:

Verification

• How to verify it?

55

1.7: Programmable Logic

Devices (PLDs)

• Device that can be programmed

to implement a wide variety of

possible Boolean functions

• Programming is performed,

other by the user, using an

inexpensive programmer

• Frequently one PLD can be

used to replace many SSI/MSI

devices.

56

1.7.1General PLD Block

Diagram:

Input
Buffers

AND Array

OR Array
Output

Inverters

n inputs

m outputs

2 n

P

m

• Four main types of PLDs:

• PLAs, PALs, PROMs,
FPGAs

57

1.7.2 Programmable Logic

Arrays (PLAs)

• Remarks:

– PLAs are most efficient when the
output functions share many product
terms.

– PLAs are more flexible than PALs or
PROMs

Input
Buffers

Programmable
AND array

Programmable
OR array

Programmable

Output Inverters

n inputs

m outputs

2 n

P

m

58

1.7.2 Programmable Logic

Arrays (PLAs)

59

1.7.3 Programmable Array

Logic (PALs)

• PALs are most useful when the

desired output functions do not

share product terms

Input
Buffers

Programmable
AND array

Fixed OR
array

Programmable

Output Inverters

n inputs

m outputs

2 n

P

m

60

1.7.3 Example 1.6

• Use a PAL to implement the

following two functions.
1 2F ab ab F ab ab   

61

1.7.4: ROM

• Remarks:

– Essentially, a ROM stores the entire
truth table of one or more Boolean
functions.

– Different types of ROMs:

• Mask ROM: programmable once at the
factory

• PROM: programmable once by the user

• EPROM: can be programmed and erased
many times

• Flash memory: electrically re-
programmable ROM

Input
Buffers

Fixed AND
array

Programmable
OR array

n inputs

K outputs

2 n

How many possible
 minterms ?

62

1.7.5: FPGAs

A Gate array is an integrated circuit containing pre placed,

but unconnected, transistor clusters and/or logic gates. A

final layer of metallization is etched at the factory to form

the interconnections that join up the pre-placed elements into

a useful circuit.

A field-programmable gate array is a programmable

integrated circuit containing pre-placed logic gate circuits

that ate interconnected by wiring and fuse or anti-fuse-

programmable switches. The programming step can be

performed “in the field” using a PC controller programmer

unit

Transistor elements

Two-level

implementation

Bus connection

Fuse programming

Gate element

Multi-level

implementation

Matrix connection

Fuse or anti-fuse

programming

PLAs, PALs, and PROMs Vs. FPGAs

63

1.7.5: Example 1.7

Architecture of the Xilinx

FPGA

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

CLB CLB

CLB CLB

Switch
Matrix

CLB: Configurable Logic Block

64

65

II. VHDL

&

Simulation

66

2. VHDL and Simulation

2.1 Introduction to VHDL

2.2 Scalar Data Types and Operations

2.3 Sequential Statement

2.4 Composite Data Types and

Operations

2.5 Modeling Constructs

2.6 Subprograms & Packages & use

clause

2.7 Resolved Signals & Generic

Constants

2.8 Components and Configurations

2.9 Logic Simulation

2.10 Predefined Environments

67

2.1 Introduction to VHDL

• Conventional Hardware Specification

• Truth tables

• Boolean equations

• State diagrams

• Pseudo-code behavioral algorithms

• Schematic diagrams

• Netlist, proprietary cad formats

• Advantages

• Similar to methods in other engineering
areas

• Familiar, graphical

• Disadvantages

• Too many different method

• Specification languages typically are not
defined in syntax or semantics

• Specifications are not typically
manipulatable

68

2.1 Introduction to VHDL

(cont‘d)

• Motivation of HDLs

• Obtain benefits of an unambiguous,

standard specification language

• Facilitate use of computer-aided design

(CAD) and computer-aided engineering

tools

• Facilitate exploration of rapidly

improving logic synthesis technology

• Increase designer efficiency, permit rapid

prototyping, reduce time-to market, etc.

• Some Common HDLs

• ABEL

• Verilog-HDL(cadence, IEEE 1364)

• VHDL (US DoD, now IEEE 1164 and

1076

69

2.1 Introduction to VHDL

cont‘d: Synthesis Technology

• logic minimization
software

• PLA synthesis
software

• Multiple-level
combination logic
synthesis

• Sequential logic
synthesis

• Automatic mapping
to gate arrays,
standard cells,
(PLDs), FPGAs

• VHDL and logic

synthesis

• VHDL provided a

key platform for

commercializing

logic synthesis

technology

• IEEE standard

1076.3 defines a

subset of VHDL

for use by logic

synthesis tools

Evolution of synthesis technology

70

2.1.1History of VHDL

• Very high speed Integrated Circuit

Program

• The US department of Defense funded the

VHSIC program in the 1970‘s and 1980‘s

to promote the improvement of

semiconductor technology

• One product of the VHSIC program was

VHDL

• Originals of VHDL

• To improve documentation of complex

hardware designs and thus improve the

ability to subcontract the design of

military systems

• To provide a standard modeling and

simulation language

• Initial Standards: IEEE 1076 (1987)

71

2.1.2 Fundamental Concept:a

Simple Design

1 - - eqcomp4 is a four bit equality comparator

2 entity eqcomp4 is

3 port (a, b: in bit_vector(3 downto 0);

4 equals: out bit); -- equals is output

5 end entity eqcomp4;

6

7 architecture dataflow of eqcomp4 is

8 begin

9 equals <= ‗1‘ when (a=b) else ‗0‘;

10 end architecture dataflow;

11 - - end of the program

a b
Comparator equals

4 4

1

72

2.1.2 Example 2.1
Design an entity of a three input And gate

1 - - three input and gate

2 entity and3 is

3 port (a, b, c : in bit;

4 d: out bit); -- d is output

5 end entity and3;

6

7 architecture structure1 of and3 is

8 begin

9 d <= a and b and c;

10 end architecture structure1;

11 - - end of the program

a
and3 db

c

73

2.1.2 Example 2.2 : An N-bit

Counter

Entity Counter is

Generic (N: Natural);

Port(Clk: in bit;

reset: in bit;

R: out natural range 0 to N-1);

End Entity counter;

Clk
Counter

R

Reset
1 1

74

2.1.2 Example 2.2 : An N-bit

Counter (cont‘d)

Architecture sync of counter is

Signal C: Natural range 0 to N-1;

Begin

R<= C;

P_count : process (Clk) is

begin

If Clk =‗1‘ and Clk‘event then

If reset =‗1‘ or C=‗N-1‘ then
C<=0; -- clear counter

Else
C<=C+1;

End if;

End if;

End process P_count;

End architecture Sync

Counter with Synch. reset

75

2.1.2 Example 2.2 : An N-bit

Counter (cont‘d) : one error

76

2.1.3 Lexical Elements

• Comments -- comments are important

• Identifiers are a sequence of non-space

characters that obey the following

rules

• Every character is either a letter, a digit,

or the underscore (_)

• The first character in the sequence is a

letter

• The sequence contains no adjacent

underscores, and the last character is not

an underscore

Remarks: VHDL identifiers are case-

insensitive

Some examples:

Last@value 5bit_counter _AO

Clock__pulse good_one

Extended identifiers: \999\

77

2.1.3 Lexical Elements (cont‘d)

• Reserved words: words or keywords

are reserved for special use in VHDL.

They can‘t be used as identifiers

78

2.1.3 Lexical Elements (cont‘d)

• Special symbols

• $ ‗ () * +, - . / : ; < => |

• => ** := /+ >= <= <>

• Numbers: integer literal and real literal

• Example 10 0 102 4.13

• Exponential notation 46E3 1E+12 5e0

3.0e-3

• Base other than 10

• Base of 2 2#10000000#

• Base of 8 8#0.4#, what is this in decimal?

• Underline as separators:

• 123_456 3.141_592_6 2#1111_1100_0000#

• Characters

• ‗A‘ --uppercase letter

• ‗z‘ -- lower case letter

• ‗,‘ -- coma

• ‗ ‗ --the separator character space

79

2.1.3 Lexical Elements

(cont‘d)

• Strings: a sequence of characters

• ―a string‖

• ―we can include and printing characters‖

• ―‖

• ―string in string ――a string ‖‖. ‖

• ―if we can‘t write a string in one line‖

• &‖ then we break it into two lines‖

• bit Strings

• B (base of 2) B‖0101 0011‖

• b‖1111_0010‖

• O (base of 8) O‖372‖

• X (base of 16) X‖FA‖ what is this ?

• X ―10‖ what is this one ?

80

2.1.4 Syntax Description

• Combine lexical elements to form valid VHDL

description

• Syntactic category

• Rules of syntax EBNF (Extended Backus-Naur

Form)

•Example of a variable assignment:

•Variable_assignment <= target:=expression;

•D0 := 25+6;

• Optional component []

•Function_call <= name[(association_list)]

• Combine alternatives |

•Mode <= in|out|inout

•Example for process statement

Process_statement <=

Process is

{process_item}

Begin

{sequential_statement}

End Process;-- will be talked about later on

81

2.2 Scalar Data Types and

Operations

• 2.2.1 Constants, variables, signals

• Constant_declarations <=
• Constant identifier {,…} : subtype_indication [:= expression];

• -- constant have a value that is defined once during
initialization, and then remains unchanged.

• -- constants in subprograms are recomputed each time the
subprogram is called

• Examples:

• Constant number _of_bytes : integer :=4;

• Constant e : real := 2.718;

• Constant prop_delay : time := 3 ns;

• Variable_declarations <=
• variable identifier {,…} : subtype_indication [:= expression];

• -- have a value that is updated
immediately as a result of an assignment
statement.

• Examples:

• Variable index : integer := 0;

• Variable start,finish : time := 0 ns;

82

2.2.1 Constants, Variables,

Signals

• Signals:

• used to model hardware signal

conductors

• information is communicated between

design components only via signals.

• signals can have fixed links to other

signals.

• signals have a present value, as well as

a sequence of past and projected future

values (variables only have a present

value).

• signal values are scheduled to be

changed by means of assignment

statements:

• A<= new_constant_value;

83

2.2.1 Variable Versus signals?

Variable and signals are easily confused at first.

• Both signals and variables can be assigned
values (also, a signal can be assigned the
value of a variable, and vice versa)

Differences between the variables & signals

• Signal correspond to physical signals
associated with conductors or busses.

• Variables are a convenience for more easily
describing algorithms that might be used in
process and subprograms. There is not
necessarily any hardware associated with a
variable.

• A variable‘s value can be changed
immediately as a result of an assignment
statement (which must use the := symbol).

• A signal‘s value can be changed no sooner
than the beginning of the next simulation
cycle. The <= symbol must be used.

84

2.2.2 Scalar types

Type declarations
Type_declaration <= type identifiers is type_definition;

Example:

Type apples is range 0 to 100;

Example 2.2 :

Package int_types is

type small_int is range 0 to 255;

End package int_types;

Use work.int_types.all;

Entity small_adder is

port(a,b: in small_int; s: out small_int);

End entity small_adder;

85

2.2.2 Scalar types (cont‘d)

Integer Types
Integer _Type_declaration <=

type identifiers is range expression (to | downto)

expression;

Example:

Type day_of_month is range 0 to 31;

Declare variable of this type:

Variable today: day_of_month := 9;

Floating Types …

Arithmetic operations:

• + - * /

• Mod rem abs **

86

2.2.2 Scalar types (cont‘d)

Physical Types
Physical_type_definition <=

type identifiers is range expression (to | downto)

expression

Units

Identifier;

{identifier=physical_literal;}

End units [identifier]

Example:

Type resistance is range 0 to 1E9

Units

Ohm;

kohm = 1000 ohm;

Mohm = 1000 kohm;

End units resistance;

Declare variable of this type:

Variable R1: resistance := 900 ohm;

87

2.2.2 Scalar types (cont‘d)

Enumeration Types:

Type water level is (too_low, low, high);

Characters …

Boolean types

Type boolean is (false, true);

Bits

Type bit is (‗0‘,‘1‘);

Standard Logic
Type std_ulogic is (‗U‘, --uninitilized

‗X‘, --forcing unkown

‗0‘, --zero

‗1‘, --one

‗Z‘, --high impedance

‗W‘, -- weak unkown

‗L‘, -- weak zero

‗H‘, -- weak one

‗-‘); --don‘t care

Sub types

Subtype small_int is integer range –128 to 127

88

2.2.2 Scalar types (cont‘d)

Type qualification

Type Logic_level is (unkown, low,
undriven, high);

Type system_state is (unkown, ready,
busy);

To distinguish between common unknown:
Use logic_level‘(unkown) and

system_state‘(unkown)

Type conversion:

real(123) integer(12.4)

Attributes of Scalar types:

• T‘left – first(leftmost) value in T

• T‘right last(rightmost) value in T

• T‘low

• T‘high

• T‘ascending True if T is an ascending

• T‘image(x)

• T‘value(s)

89

2.2.2 Scalar Types (cont‘d)

• VHDL is a strongly typed language

• every object has a unique type.

• objects of different types cannot be

mixed together in expressions.

• object typing can be determined

statically

• the type of every object must be clear

from the VHDL program before any

simulation has taken place.

• the types of object must be declared

explicitly in all program scopes.

90

2.3 Sequential Statement

• 2.3.1 if statement

• 2.3.2 case statement

• 2.3.3 Null statement

• 2.3.4 loop statement

• 2.3.5 assertion and report statements

91

2.3.1 If Statement

• Syntax rule

• If_statement <=

• [if_label:]

• If boolean_expression then

• {sequential_statement}

• {elsif boolean_expression then

• {sequential_statement}}

• [else

• {sequential_statement}]

• End if [if_label];

• Example for If_statement <=

If (count =―00‖) then

a<=b;

Elsif (count =―10‖) then

a<=c;

Else

a<=d;

End if ;

a
b
c
d

count

1
11

1

2

92

2.3.2 Case Statement

• Syntax rule

• case_statement <=

• [case_label:]

• case expression is

• (when choices => {sequential_statement})

• {…}

• End case [case_label];

• Example for case_statement <=

case count is

When ―00‖ =>

a<=b ;

When ―10‖ =>

a<=c ;

When others =>

a<=d ;

End case ;

a
b
c
d

count

1
11

1

2

93

2.3.3 Null Statement

• Null_statement <= [label:] null;

• Example

• case count is

When ―00‖ =>

a<=b ;

When ―10‖ =>

a<=c ;

When ―01‖ =>

a<=d ;

When ―11‖ =>

null ;

End case ;

a
b
c
d

count

1
11

1

2

94

2.3.4 Loop Statement

• Infinite loop:

• Loop_statement <=

• [loop_label:]

• loop

• {sequential_statement}

• End loop [loop_label] ;

• Example: Loop

• wait until clk =‗1‘;

• count <= count_value;

• end loop;

• While loop:

• Loop_statement <=

• [loop_label:]

• while condition loop

• {sequential_statement}

• End loop [loop_label] ;

95

2.3.4 Loop Statement (cont‘d)

Example for While loop:

n := 1;

Sum := 0;

while n <100 loop

n := n+1;

Sum := sum +n;

End loop ;

For loop:

Loop_statement <=

[loop_label:]

For identifiers in discrete range loop

{sequential_statement}

End loop [loop_label] ;

Example for the for loop

For n in 1 to 100 loop

Sum := sum +n;

End loop ;

96

2.3.4 Loop Statement (cont‘d)

Exit statement <=

[label:] exit [loop_label] [when

boolean_expression];

Loop

wait until clk =‗1‘ or reset =‗1‘;

Exit when reset = ‗1‘;

count <= count_value;

end loop;

NEXT statement

Loop

statement 1;

Next when condition

Statement 2;

End loop;

Loop

statement 1;

If not condition then

Statement 2;

End if;

End loop;

97

2.3.5 Assertion and Report

Statement

• Assertion_statement <=

• [label:] assert boolean_expression

[report expression] [severity expression];

• assert initial_value <= max_value

• report ― initial value too large‖

98

2.4 Composite Data Types

and Operations

• Array types

• Type BIT is range 0 to 1;

• Type word is array (31 downto 0) of bit;

• Example:

• Signal MEM_BUS: WORD;-- will be defined later

• MEM_BUS(0) <= 0 ;

• MEM_BUS(1) <=0 ;

• MEM_BUS(2) <=1 ;

• Records

• Type time_stamp is record

• seconds: integer range 0 to 59;

• minutes: integer range 0 to 59;

• hours : integer range 0 to 23;

• End record time_stamp;

Variable sample_time, current_time: time_stamp;

Current_time.seconds := 30;

Current_time.hours := 13;

99

2.5 Modeling Constructs

• VHDL inherited many modularity ideas form
the DoD software language ADA

• hardware specifications are composed of five
kinds of design units:

• Entities

• Architectures

• Configurations

• Packages

• Package bodies

• design units are provided to the VHDL
simulation and/or synthesis environment in
source files

• Design units can also be included from
libraries of pre-designed data types, signal
types, signal type conversions, components
etc.

100

2.5.1 Modeling Constructs:

entity

Entity block is

Port (a, b: in bit;

c: buffer bit;

d: inout bit;

e: out bit);

End entity block;

buffer can be used for all output signals

a

b
c

d

e

in

in

buffer

inout

out

101

2.5.2 Modeling Constructs:

Architecture Bodies

• Architecture_body <=

• Architecture identifier of entity_name is

• {block_declaration}

• Begin

• { concurrent_statement}

• End [architecture][identifier];

• Example:

• Entity adder is

Port (a: in word;

b: in word;

sum: out word);

End entity adder;

Architecture ad1 of adder is

Begin

Add_a_b: process(a,b) is

Begin

sum <= a+b;

End process add_a_b;

End architecture ad1;

• Signal declarations
• Signal_declaration <=

• Signal identifier {…} : subtype_indication [:=

expression]

102

2.5.3 Two Main Levels of

VHDL Specification

• 1) Behavior level:

• What is the system supposed to do?

• Components described using algorithms
that do not necessarily reflect the actual
hardware structure of likely
implementations.

• Signal don‘t necessary need to be binary
values. Data types can be chosen to
facilitate high-level description

• 2) Structure level:

• What is the structure of an
implementation?

• Design specified using realizable
components

• Binary representation of data types and
signals are used.

103

Example 2-to 4 Decoder

• VHDL entity for the decoder

Entity decoder is

port (sel : in bit_vector (1 downto 0);

dout : out bit_vector (3 downto 0));

constant delay : time := 5 ns;

end entity decoder;

sel(0)

sel(1)

dout(0)
dout(1)
dout(2)
dout(3)

104

Behavior-level architecture in

VHDL

• Behavior-level architecture in VHDL

Architecture behavior1 of decoder is

begin

with sel select

dout <=

―0001‖ after delay when ―00‖,

―0010‖ after delay when ―01‖,

―0100‖ after delay when ―10‖,

―1000‖ after delay when ―11‖,

end behavior1 ;

sel(0)

sel(1)

dout(0)
dout(1)
dout(2)
dout(3)

105

Structure-level architecture

Architecture structure1 of decoder is

component and2 –pre-defined part type

Port (I1, I2 : in bit; O1 out bit);

End component;

component inverter –pre-defined part type

Port (I1 : in bit; O1 out bit);

End component;

Signal sel_bar: bit_vector (1 downto 0);

Begin

inv_0: inverter port map (I1=>sel(0),
O1=>sel_bar(0));

inv_1: inverter port map (I1=>sel(1),
O1=>sel_bar(1));

and_0:and2

port map (I1=>sel_bar(0), I2=>sel_bar(1),
O1=>dout(0));

and_1:and2

port map (I1=>sel(0), I2=>sel_bar(1), O1=>dout(1));

and_2:and2

port map (I1=>sel_bar(0), I2=>sel(1), O1=>dout(2));

and_3:and2

port map (I1=>sel(0), I2=>sel(1), O1=>dout(3));

End structure1 ;

106

Structure-level schematic

107

2.5.4 Modeling Constructs

• Signal assignment

• Signal_assignment_statement <=

• [label:] name <= [delay] waveform;

• Waveform <= (value_expression [after

time_expression]) {…}

• y <= a or b after 5 ns;

• Wait statement <=

• [label:] wait [on signal name {…}]

• [until boolean_expression]

• [for time_expression];

108

2.5.4 Modeling Constructs

(cont‘d): signal attributes
• S’delayed(T)

• if T>0, then a signal is returned that is
identical to S delayed by time T. If T=0 (or
is absent), then S is returned delayed by time
delta.

• S’stable(T)

• if T>0, then a signal is returned that has
value TRUE if S has not changed for the past
time T; at other times the signal has value
FALSE. If T=0 (or is absent), then the signal
will be FALSE during a simulation cycle
when S changes values; otherwise the signal
is TRUE.

• S’quiet(T)

• if T>0, then a signal is returned that has
value TRUE if S has not been updated for the
past time T; at other times the signal has
value FALSE. If T=0 (or is absent), then the
signal will be FALSE during a simulation
cycle when S is updated; otherwise the signal
is TRUE.

109

2.5.4 Modeling Constructs

(cont‘d): signal attributes

• S’active(T)

• Boolean that is true if signal S has been

updated during the current simulation cycle

• S’event

• Boolean that is true if signal S has changed

value during the current simulation cycle

• S’LAST_EVENT

• The amount of time elapsed since signal S

last changed value.

• S’LAST_ACTIVE

• The amount of time elapsed since signal S

was last updated.

• S’LAST_VALUE

• The value of signal S before the last time that

signal S changed values.

110

2.5.4 Modeling Constructs (cont‘d)

Delay_mechanism<=
transport | [reject time_expression]

inertial

Example for transport:

Line_out <= transport line_in after 3 ns;

Remarks: the output is shift by the time delay

Example for inertial delay:

Line_out <= inertial not line_in after 3 ns;

• Remarks: if a signal would produce an output

pulse shorter than the propagation delay, the the

output pulse does not happen

Line_in

Line_out

Line_in

Line_out

111

2.5.4 Modeling Constructs

(cont‘d)

• Example for both inertial and reject
• Line_out <= reject 2 ns inertial not line_in after 3

ns;

• Remarks: if a signal would produce an output

pulse shorter than the reject limit delay, the the

output pulse does not happen

• Process statements <=

• [process_label:]

• Process [(signal_name{…})] [is]

• { process_item}

• Begin

• {sequential_statement}

• End process [process_label]

112

2.5.5 Modeling Concurrency

• In real digital hardware, components all

operate at the same time and signals are

updated in parallel.

• How to model concurrency/parallel in VHDL

• Components models are decomposed into

processes that execute in parallel

• Different signals have values that change in

parallel over time

• VHDL provides the ability to specify times

in the future when signals will be updated.

• VHDL provides the ability to specify

synchronization points, when the values of a

group of signals are examined and/or updated

for the same time instant.

113

2.5.5 Modeling

Concurrency(cont‘d)

• -VHDL processes can be used for
concurrent statement

• Example :

• Proc1: process(A,B) [is]

• Begin

• C<= A or B after 5 ns;

• End process;

• Another example:

• Proc2: process(A,B)

• Begin

• C<= A or B;

• Wait on A, B;

• End process;

114

2.5.5 Modeling

Concurrency(cont‘d)

• A VHDL process can be thought of as a sub-
program that is called once at the beginning
of the simulation

• All VHDL processes execute in parallel

• When the simulation starts, each process
begins executing statements following the
begin statement

• Execution is suspended when the next wait
statement is encountered

• Wait; - suspends process forever

• Wait on signal_list;

• Wait until condition;

• Wait for time_value;

• Once the end process statement is
encountered, execution returns to the
statement following the begin statement.

115

2.5.5 Modeling

Concurrency(cont‘d):

Concurrent Statements

• Sequence of Boolean equations:

• F <= a nor b nor c;

• D <= a and b and c;

• E <= a nor b or c;

• When-else conditional signal
assignment:

Architecture example of fsm is

…

With state select

X<= ―0000‖ when s0|s1

―0010‖ when s2|s3;

Y when s4;

Z when others;

End example;

116

2.5.5 Modeling

Concurrency(cont‘d):

Concurrent Statements

• Multiple assignment using Generate:

• g1: for j in 0 to 2 generate

• a(j) <= b(j) or c(j);

• End generate g1;

• g2: c(1) <=c(0) and a(1);

• For k in 2 to 20 generate

• c(k) <= c(k-1) and a(k);

• End generate g2;

• g3: For l in 0 to 8 generate

• Reg1: register9 port map (clk, reset, enable,

d_in(l), d_out(l));

• End generate g3;

117

2.5.6 Example : Counter with

asynch. reset
• Entity Counter is

• Generic (N: Natural);

• Port(Clk: in bit;

• reset: in bit;

• R: out natural range 0 to N-1);

• End counter;

• Architecture Async of counter is

• Signal C: Natural range 0 to N-1;

• Begin

• R<= C;

• P_count : process (Clk, reset)

• begin

• If reset =‗1‘ then

• C <=0; -- clear the counter

• elsIf clk =‗1‘ and clk`event then
• If C = N-1 then

• C<=0; -- clear counter

• Else
• C<=C+1;

• End if;

• End if;

• End process P_count;

• End Async

118

2.5.6 Example counter with

asynch. Reset (cont‘d)

Clk
register

C

Reset

MUX

0

R

A B
Comparator

N-1

A=B

+1

119

2.5.6 Modeling Finite State

Machine

• VHDL is easy to implement finite

state machines

• When combined with logic synthesis,

a hardware designer no longer needs to

be concerned with the problems of

state assignments, logic minimization,

etc.

• Instead the designer can concentrate

on high level behavior.

120

2.5.6 Modeling Finite State

Machine : Example

Present Next state Output

State X=0 X=1 X=0 X=1

S0 S1 S1 0 0

S1 S2 S1 0 0

S2 S2 S1 0 1

121

Architecture of State Machine
• Architecture state_machine of example is

• Type stateType is (s0,s1,s2);

• Signal present_state,next_state:stateType;

• Begin

• Comb logic: process(present_state,x)

• Begin

• Case present_state is

• When s0 => output <=‗0‘;

• Next_state <=s1;

• When s1 => output <=‗0‘;

• If (x=‗1‘) then Next_state <=s1;

• Else Next_state <=s2;

• End if;

• When s2 =>

• If (x=‗1‘) then Next_state <=s1; Output <=‗1‘;

• Else Next_state <=s2; output <=‗0‘;

• End if;

• End case;

• End process comb_logic;

122

2.6 Subprograms & Packages

& use clause (cont‘d)
• Procedure encapsulates a collection of

sequential statements that are executed for
their effect

• Subprogram_body <=

• Procedure identifier [(parameter_list)] is

• Begin

• {sequential_statement}

• End [procedure] [identifier];

• Function encapsulates a collection of
statement that compute a result

• Subprogram_body <=

• [pure | impure]

• Function identifier [(parameter_list)] return
type_mark is

• {subprogram_declarative_item}

• Begin

• {sequential_statement}

• End [function] [identifier];

• Return_statement <= [label:] return
expression;

123

2.6 Subprograms & Packages

& use clause (cont‘d)

• Package provide an important

way of organizing the data and

subprogram declared in a model

• Package_declaration <=

• package identifier is

• {package_declarative_item}

• End [package] [identifier];

• Use clause allows us to make any

name form a library or package

directly visible

• Use_clause <= Use selected_name

{…};

• Selected_name <=

• Name.(identifier|character_literal|operat

or_symbol|all)

124

2.6.1 Procedures

• Example:

• Procedure average_sample is

• Variable total:real := 0.0;

• Begin

• Assert samples' length >0 severity
failure;

• For index in samples' range loop

• Total :=total+sample(index);

• End loop;

• Average := total/real(samples' length);

• End procedure average_samples;

• The action of a procedure are invoked
by a procedure call statement

• Procedure_call_statement <= [label:]
procedure_name;

• Example:

• Average_samples;

125

2.6.1 Procedures (cont‘d)

• Return statement in a procedure

• To handle exceptional conditions, the procedure
may return in the middle of the procedure.

• Return_statement <= [label:] return;

Procedure parameters

Interface_list <= ([constant | variable | signal]
identifier {…}:[mode] subtype_indication
[:=static_expression]) {;…}

mode <= in | out | inout

Example :

Type func_code is (add, substract);

Procedure do_arith_op (op: in func_code) is

variable result: integer;

Begin

case op is

when add =>

result := op1+op2;

when subtract =>

result :=op1-op2;

end case;

End procedure do_arith_op;

126

2.6.2 Functions

• Example:

• Function limit(value, min, max :integer)
return integer is

• Begin

• If value > max then
• Return max;

• Elsif value < min then
• Return min;

• Else
• Return value;

• End if;

• End function limit;

• Pure and impure functions:

Pure function: same parameter values
for same results

Impure function: same parameter
values for possible different results.

• Overloading

127

2.6.2 Functions (cont‘d): Visibility of

Declarations
• Architecture arch of ent is

• Type t is…;

• Signal s:t;

• Procedure p1(…) is - - p1 t s are visible global

• Variable v1:t; -- v1 is visible only in procedure1

• Begin

• V1:=s;

• End Procedure p1;

• Begin – arch

• Proc1: process is

• Variable v2:t; -- v2 is visible in proc1

• Procedure p2(…) is --p2 is visible in proc1
• Variable v3:t; --v3 is only visible in procedure2

• Begin
• P1(v2, v3…);

• End procedure p2;

• Begin –proc1

• P2(V2,…);

• End process proc1;

• Proc2: process is

• …

• Begin –proc2

• P1(…);

• End process proc2;

• End architecture arch;

128

2.6.3 Packages

• Example :

• Package cpu_type is

• Constant word_size:positive := 16;

• Constant address_size :positive :=24;

• Subtype address is bit_vector(address_size-1
downto 0);

• End package cpu_type;

• The cpu_type package has been analyzed and placed
into the work library.

• Entity address_decoder is

• Port (addr : in work.cpu_types.address;
• ……..);

• End entity address_decoder;

• Remarks:
• Each package declaration that includes subprogram

declarations or deferred constant declarations must
have corresponding package body to fill in the missing
details. However, if a package only include other
kinds of declarations, such as types, signals, constant.
No package body is necessary.

129

2.6.3 Packages (cont‘d) : Package

bodies
• Example :

• Package some_arithmetic is

• Function limit(value, min, max :integer)
return integer;

• constant word_size:positive := 16;

• Constant address_size :positive :=24;

• ……..

• End package some_arithmetic;

• Package body some_arithmetic is

• Function limit(value, min, max :integer)
return integer is

• Begin
• If value > max then

• Return max;

• Elsif value < min then

• Return min;

• Else

• Return value;

• End if;

• End function limit;

• …..

• End package body some_arithmetic;

130

2.6.3 Use clause
• Variable Next_address: work.cpu_types.address;

• ….. -- tedious to

• Changes to

• Use work.cpu_types;

• Variable Next_address: cpu_types.address;

• …..

• Example:

• Library ieee; use

ieee.std_logic_1164.std_logic;

• Entity logic_block is

• Port (a, b: in std_logic;

• Y,z: out std_logic);

• End entity logic_Block;

131

2.7 Resolved Signals &

Generic Constants
• Problem: Multiple output ports connecting one

signal.

• Type tri_state_logic is (‗0‘, ‗1‘, ‗z‘);

• Type tri_state_logic_array is array (integer

range<>) of tri_state_logic;

• Function resolve_tri_state_logic(value : in

tri_state_logic_array) return tri_state_logic is

• Variable result : tri_state_logic :=‗Z‘;

• Begin

• For index in values' range loop

• If values(index) /= ‘z’ then

• Result :=values(index);

• End if;

• End loop;

• Return result;

• End function resolve_tri_state_logic;

• Signal s1: resolve_tri_state_logic tri_state_logic;

• Subtype resolved_logic is resolve_tri_state_logic

tri_state_logic;

• Signal S2,S3: resolved_logic;

132

2.7.1 Resolved Signals

(cont‘d)
• IEEE std_logic_1164 resolved subtypes

• Type std_ulogic is

(‗U‘,‘X‘,‘0‘,‘1‘,‘Z‘,‘W‘,‘L‘,‘H‘,‘-‘);

• Type std_ulogic_vector is array (natural range<>)

of std_ulogic;

• Function resolved(s:std_ulogic_vector) return

std_ulogic;

• Subtype std_logic is resolved std_ulogic;

• Type std_logic_vector is array (natural range <>)

of std_logic;

133

2.7.2 Generic Constants

• Generic: writing parameterized models

• Entity_declaration <=

• Entity identifier is

• [generic (generic_interface_list);]

• [port (port_interface_list);]

• {entity_declarative_item};

• [begin

• Concurrent_assertion_statement |
passive_concurrent_procedure_call_statement |
passiv_process_statement}]

• End [entity] [identifier];

• A simple example

• Entity and2 is

• Generic (Tpd : time);

• Port (a,b : in bit; y :out bit);

• End entity and2;

• Architecture simple of and2 is

• Begin

• And2_function:

• Y<= a and b after Tpd;

• End architecture simple;

134

2.7.2 Generic Constants

(cont‘d)
• A generic constant is given an actual value when the

entity is used in a component instantiation statement.

• Component_instantiation_statement <=

• Instantiation_label:

• Entity entity_name [(architecture_identifier)]

• [generic map (generic_association_list)]

• [port map(port_association_list)];

• Example to use and2 for component instantiation:

• Gate1: entity work.and2(simple)

• Generic map(Tpd => 2 ns)

• Port map (a=>sig1,b=>sig2,y=>sig_out);

• For number of generic constants:

• Entity control_unit is

• Generic (Tpd_clk_out, tpw_clk : delay_length; debug:

boolean:=false);

• Port (clk : in bit; ready : in bit; control : out bit);

• End entity control_unit;

• Three ways to write a generic map:

• Generic map(200ps, 1500 ps, false)

• Generic map(tpd_clk_out=>200ps, tpw_clk=> 1500 ps)

• Generic map(200ps, 1500 ps, debug => open) - - open

means using the default value

135

2.7.2 Generic Constants

(cont‘d)

• Second use of generic constants is to

parameterize their structure.

• Entity reg is

• Generic (width : positive);

• Port(d: in bit_vector(0 to width –1);

• q: out bit_vector(0 to width –1);

• …);

• End entity reg;

• Signal in_data, out_data:bit_vector(0 to

bus_size-1);

• …

• Ok_reg:entity work.reg

• Generic map(width=>bus_size)

• Port map(d=>in_data, q=> out_data,…);

136

2.8 Components and

Configurations
• Component_declaration <=

• Component identifier [is]

• [generic (generic_interface_list);]

• [port(port_interface_list);]

• End component [identifeir];

• Example:

• component and2 –pre-defined part type

•

• Port (I1, I2 : in bit; O1 out bit);

• End component;

• Component_instantiation_statement <=

• Instantiation_label:

• [component] component_name

• [generic map (generic_association_list)]

• [port map(port_association_list)];

• Example see Architecture structure1 of
decoder in slide 105.

137

2.8 Components and

Configurations (cont‘d)
• Packaging components:

• Library ieee; use ieee.std_logic_1164.all;

• Package serial_interface_defs is

• Subtype …

• Constant …

• Component serial_interface is

• Port(…);

• End component serial_interface;

• End package serial_interface_defs;

• Entity declaration:

• Library ieee; use ieee.std_logic_1164.all;

• Use work.serial_interface_defs.all;

• Entity serial_interface is

• Port(…);

• End entity serial_interface;

• An architecture body:

• Library ieee; use ieee.std_logic_1164.all;

• Architecture structure1 of micro controller is

• Use work.serial_interface_defs.serial_interface;

• Begin

• serial_a : component serial_interface

• Port map(…);

• …

138

2.9: Logic Simulation

• A tool for design verification testing

• Ascertain a design perform its

specified behavior (function and

timing)

• Simulation process

stimuli and
control simulator results

circuit model

139

2.9.1 Design Verification:

True Value Simulation

• Determine the output for certain inputs

• Find design errors, timing problems,

etc.

• Limitations:

• The set of design errors is not enumerable

• No formal procedure to generate tests

• A system passes the test is shown correct

only with the applied test cases

• Simplified circuit model

• A circuit passes the simulation test may

not work when being wired up

140

2.9.1 Design Verification:

True Value Simulation

(cont‘d)

• Timing :delay models

• Transport delays

• Initial delays

A B

A

B1

B2

141

• General concept behind most

simulation algorithms

• An event represents a change in the

value of a signal line at some

simulated time t

• If the value of a signal line x changes,

then all gates having x as input are

activated

• If the activated gates change their

output values, new events are

generated.

2.9.2 Event_driven Simulation

142

2.9.2 Event_driven Simulation

(cont‘d)

• An event list can be organized as a

linked list stored in increasing time

order

t1 t2 t3 ...

event
list

...

C,
val

d,
val

f,
val

143

2.9.2 Event_driven Simulation (cont‘d)

• Two-pass algorithm for gate-level event-driven

simulation

• While(event_list is not empty) do begin

• For (every event(x,val) at time t) do begin

• Get the event (x,val)

• If(current_val_of_x <>val) then begin

• Current_val_of_x=val

• For (each gate J on fanout list of x) do begin

• Change the value of fanout line going into gate J

• Add gate J to activated_gates

• End

• End

• End

• For (each gate J of activated_gates) do begin

• Compute output value of gate J

• If(output_value_gate_j <> last_scheduled_value_gate_j)

then begin

• Schedule

(output_line_number_gate_J,output_value_gate_J) for time

t+delay of gate_J

• Last scheduled_value_gate_J=output_value_gate_J

• End

• End

• End

144

2.9.2 Event_driven Simulation (cont‘d)

• Pass1

• Get the entries from

the event list

associated with the

current time t

• Determine the

activated gates

• This is to avoid

multiple

evaluations of a

gate that is

activated by more

than one event

• Pass2

• Compute the new

output values of the

activated gates

• Schedule their

computed value in

the event list

• The algorithm

keeps track of the

last-scheduled

value of a gate so

as to schedule only

―true‖ events

145

2.9.2 Event_driven Simulation

(cont‘d): an Example

1
2

3

5

6

74

A

C

B

X1

X2

X3

Gate A B C

Propagation delay 10 ns 6 ns 10 ns

146

2.9.2 Event_driven Simulation

(cont‘d): an Example

Phase 1 phase2

Line values Gates

affected

Scheduled

events

Time 1 2 3 4 5 6 7 A B C

Init 1 0 1 0 1 0 1

4 0 X (5,0) at 4+10

6 1 0 1 X X (5,1) at 6+10

14 0 X (7,0) at 14+10

16 1 X (7,1) at 16+10

24 0

26 1

28 1 X

147

Event_driven Simulation (cont‘d): an

Example

4 6 28

Initial t=0

1,
0

3,
0

2,
1

1,
1

148

Event_driven Simulation (cont‘d): an

Example

6 14 28

 t=4

5,
0

1,
1

3,
0

2,
1

149

Event_driven Simulation (cont‘d): an

Example

14 16 28

Initial t=6

5,
0

5,
1

1,
1

150

Event_driven Simulation (cont‘d): an

Example

16 24 28

Initial t=14

5,
1

7,
0

1,
1

151

Event_driven Simulation (cont‘d): an

Example

24 26 28

Initial t=16

7,
0

7,
1

1,
1

152

Event_driven Simulation (cont‘d): an

Example

26 28 28

t=24

7,
1

1,
1

1,
1

t=26

153

Event_driven Simulation (cont‘d):

Timing Diagram

X1

X2

X3

X4

X5

X6

X7

t4 t8 t12 t20 t28

154

2.9.2 Synthesis and Simulation

• Simulation

• model testing

• model debugging

• Find design errors,

• Find timing

problems,

• Synthesis

• Reduction of a

design description

to a lower-level

circuit

representation.

• shorter design

cycle

• Lower design cost

• Fewer design

errors.

• Easier to determine

available design

trade-offs.

155

2.9.2 Predefined Environment

• The package STANDARD is always
available

• Package STANDARD is

• Type Boolean is (FALSE, TRUE);

• Type BIT is (‗0‘,‘1‘);

• Type character is (ASCII characters);

• Type severity_level is (note, warning,
error, failure);

• Type time is range
implementation_defined

• Units fs; ps=1000 fs; ns=1000 ps;
us=1000ns;ms=1000us;sec=1000ms;min=
60sec;hr=60 min;

• End units

• Predefined numeric types

• Type integer is range
implementation_defined;

• Type real is range
implementation_defined;

156

2.9.2 Predefined Environment (cont‘d):

standard package

• Function Now return Time – function

that returns current simulation time

• Subtype Natural is integer range 0 to

integer' high;--numeric subtypes

• Subtype positive is integer range 1 to

integer' high;

• Type string is array (positive range<>)

of character;

• Type bit_vector is array(natural range

<>) of bit;

• End STANDARD;

157

2.9.2 Predefined Environment (cont‘d)

• Package TEXTIO is also always

available

• Package TEXTIO is

• Type Line is access string;

• Type text is file of string;

• Type side is (right,left);

• Subtype width is natural;

• File Input :text is in ―STD_INPUT‖;

• File output : text is out ―STD_OUTPUT);

• Procedure readline (F: in TEXT; L : out

Line);

• Procedure read (L: inout line; V : out

Bit);

• Procedure read (L: inout line; V : out

Bit_vector);

• Procedure read (L: inout line; V : out

Boolean);

158

2.9.2 Predefined Environment(cont‘d):

TEXTIO package

• Procedure read (L: inout line; V : out character);

• Procedure read (L: inout line; V : out integer);

• Procedure read (L: inout line; V : out real);

• Procedure read (L: inout line; V : out string);

• Procedure read (L: inout line; V : out time);

• Procedure writeline (F: out text; L :in line);

• Procedure write (L:inout line; V : in bit; justified
: in side := right; field : in width :=0);

• Procedure write (L:inout line; V : in bit_vector;
justified : in side := right; field : in width :=0);

• Procedure write (L:inout line; V : in boolean;
justified : in side := right; field : in width :=0);

• Procedure write (L:inout line; V : in character;
justified : in side := right; field : in width :=0);

• Procedure write (L:inout line; V : in integer;
justified : in side := right; field : in width :=0);

• Procedure write (L:inout line; V : in real;
justified : in side := right; field : in width :=0);

• Procedure write (L:inout line; V : in string;
justified : in side := right; field : in width :=0);

• Procedure write (L:inout line; V : in time;
justified : in side := right; field : in width :=0);

• End textio;

159

2.9.2 Predefined Environment:

Standard IEEE Library

• Package STD_logic _1164 is not part of the
VHDL standard, but it is so widely used. To
access the package, a VHDL program must
include the following two lines at the
beginning:

• Library ieee;

• Use ieee.std_logic_1164.all;

• Signals in this library have nine values

• Type std_logic is (

• ‗U‘, --uninitialized

• ‗X‘,--forcing unknown

• ‗0‘—forcing 0

• ‗1‘,--forcing 1

• ‗z‘,--high impedance

• ‗w‘,--weak unknown

• ‗l‘,--weak 0

• ‗h‘,--weak 1

• ‗-‘); -- don‘t care

160

2.9.2 Predefined Environment:

Standard IEEE Library (cont‘d)

• The type STD_logic is provided with a

resolution function that determines the final

obtained when two or more buffers drive

different values onto a signal

• The type STD_ULOGIC has the same nine

signal values as STD_LOGIC, but without

the resolution function.

• Type std_logic_vector is

• Array (natural range <>) of STD_logic;

• Type std_ulogic_vector is

• Array (natural range <>) of STD_ulogic;

161

2.9.2 Predefined Environment:

Standard IEEE Library (cont‘d)

• The standard IEEE library (cont‘d)

• Function To_bit (S: std_ulogic; Xmap :

Bit := ‗0‘) return Bit;

• Function To_bitvector (S:

std_logic_vector; Xmap : Bit := ‗0‘)

return Bit_vector;

• Function To_bitvector (S:

std_ulogic_vector; Xmap : Bit := ‗0‘)

return Bit_vector;

• Function To_stdulogic (B: bit) return

std_ulogic;

• Function To_stdlogicvector (B:

bit_vector) return std_logic_vector;

• Function To_stdulogic (B:

std_ulogic_vector) return

std_logic_vector;

• Function To_stdulogic (B: bit_vector)

return std_ulogic_vector;

162

163

III. Digital

Design &

Applications

164

3. Digital Design and

Applications

• 3.1 Introduction to Digital System

Design

• 3.2 Register-Transfer Level

• 3.3 Impediments to Synchronous

Design

• 3.4 Variable Entered Maps

• 3.5 Design steps for a digital

system

• 3.6 Digital Design Example

165

3.1.1 Problems for classical

Sequential Design

• Classical sequential circuit design

techniques could, in theory, be used in

arbitrarily complex design problems.

• In practice, however, classical

techniques are ineffective for all but

the simplest problems.

• Reason:

• The complexity of the design problem

overwhelms the human designer‘s ability

to find a correct solution

• Using classical techniques leads to

designs that are

• Hard to understand, hard to modify, and hard

to test

166

3.1.2 Software solutions to

Digital System Design

• Advantages:

• No need to design

hardware

• Software is relatively

easy to

change/customize

• Complex features can

be readily provided in

software

• Can test software

designs using

emulators.

• Disadvantages

• Microprocessors can be
overly complicated for
many controller
problems

• Custom hardware can
provide better
performance than
general-purpose
hardware

• Custom techniques are
still required in custom
or semi custom
integrated circuits

• Custom designs can be
protected using patent
or IC mask laws

•Many digital design problems are entirely

solvable using custom software and standard

microprocessor: examples ?

167

3.1.3 Basic Strategies in

Digital System Design
• Top-down design

• Manage design complexity.

• Postpone commitment to any particular
hardware

• Use iterative refinement to gradually
converge on a natural solution

• Decompose a module into loosely
interacting sub modules

• Design using high-level building blocks

• Conservative/safe design techniques

• Use synchronous hardware wherever
possible

• Convert asynchronous inputs to
synchronous inputs

• Use a robust system-wide clocking
strategy

• Make design static if possible(ie. Correct
operation is independent of clock speed)

168

3.1.3 Basic Strategies in

Digital System Design

(cont‘d)

• Conservative/safe design techniques

• Provide a single stepping mode

• Make design testable by construction

• Avoid obscure design tricks

• Document the design thoroughly

• Requirement, (user-oriented),

specification (designer-oriented)

• Reasons for designs decisions

• List relevant standards

• Propose test plans

• Develop maintenance procedures

• Consider manufacturability issues

169

3.1.4 Signals at External

Interface

• System level control signals:

• Highest level commands

• External user is shielded form internal details

• System level status signals

• Simplified high-level status information is
provided to the external user

• Data in

• Analog signals are typical converted to digital
processing

• Data out

• Analog signals may need to be reconstructed from
their internal digital representation

Digital
system

control
 signal

status
signal

data in

data out

170

3.1.5 Highest Level of System

Architecture

• Control path

• Circuit that control

algorithm by which

operators are

applied to the data

• State control and

data operation

sequencing are

emphasized

• Typical control

units:

• Registers

• Next state logic

• Output logic

• Control+status line

• Data path

• Circuits that

directly store and

transform the data

• Bit parallelism and

regular structure

are emphasized

• Typical data path

elements:

• Registers

• Multiplexes

• Shift/adders/ALUs

• Counters

• buses

171

3.1.5 Highest Level of System

Architecture (cont‘d)

controller

data in

internal
control
signal

data path

data out

external
control
signal

internal
status
signal

external
status
signal

172

3.2 Register Transfer Level

• A convenient conceptual level
intermediate between the system level
and the gate level

• RTL assumes a set of hardware constructs
are defined in FPGA hardware and library
elements

• HDL code is mapped to these constructs

• Describe the operation of synchronous
system

• Combine the control-flow state machine
with means for defining and operating
multi-bit registers

• Typical RTL constructs:

• Combinational logic

• Arbitrary functions (random logic,
ROMs, PALs, PLAs)

• Multiplexers

• Demultiplexers/decoders

• Comparators

• Arithmetic./logic circuits (ALUs,
adders, subtractors)

173

3.2 Register Transfer Level

(cont‘d)

• Sequential Logic

• Latches, flip-flops

• Registers, shift registers

• Counters, LFSRs

• RAMs

• Interconnect:

• Buses

• Wires

• Buffers

• Tri-state able buffers

• Bi-directional transceivers

174

3.2.1 Multiplexers (Mux)

• Multiplexer is a digital switch

• It connects data from one of n sources to

its output.

• A logic equation:

• Summation symbol represents a logical

sum of product terms

• iY is a particular output bit (1 <= i< =b)

• iDj is input bit I of source j (0<=j<=n-1)

• Mj represents minterm j of the s select

inputs

• ? The relationship between S and n

1

0

n

j j

j

iY EN M iD




  

data out

Enable

select
s

b

b

b

n data
source

EN

SEL

D0

D1

Dn-1

b

Multiplexer

175

3.2.1 Multiplexers (cont‘d)

• Example 4 to 1 MUX

• How to implement?

4 X 1

MUX

Io

S1

I1

I2

I3

EN

S0

Y EN S1 S0 Y

1 x x 0

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

176

3.2.1 Multiplexers in VHDL

(cont‘d)

• Mutiplexers are very easy to describe in

VHDL.

• Example for 4 in 1 bit MUX:

• Entity mux4in1b is

• Port (S : in std_logic_vector (1 downto 0);

• I0, I1, I2, I3 : in std_logic;

• Y: out std_logic

•);

• End mux4in1b;

• Architecture mux4_1b of mux4in1b is

• Begin

• with S select Y<=

• I0 when ―00‖,

• I1 when ―01‖,

• I2 when ―10‖,

• I3 when ―11‖,

• End mux4in1b;

177

3.2.1 Expanding Multiplexers

• Expand 4 input 1 bit output multiplexer to 4
input 8 bit output multiplexer

• Entity mux4in8b is

• Port (S : in std_logic_vector (1 downto 0);

• I0, I1, I2, I3 : in std_logic_vector (1 to 8) ;

• Y: out std_logic_vector (1 to 8)

•);

• End mux4in8b;

• Architecture mux4in_8b of mux4in8b is

• Begin

• with S select Y<=

• I0 when ―00‖,

• I1 when ―01‖,

• I2 when ―10‖,

• I3 when ―11‖,

• End mux4in_8b;

178

3.2.1 Expanding Multiplexers

(cont‘d)

• Expand 4 input 1 bit output

multiplexer to 8 input 1 bit output

multiplexer

• How to implement it in VHDL?

4 X 1

MUX

Io

S1

I1

I2

I3

EN

S0

Y

4 X 1

MUX

Io

S1

I1

I2

I3

EN

S0

Y

179

3.2.2 DeMultiplexers

• Used to direct data to one of two or

more possible destinations

data in

Enable

select
s b

b

b

 data out

EN

SEL Y0

Y1

Yn-1

b

DeMultiplexer

DE

MUX

Y0

S1

Y1

Y2

Y3

E

S0

S1 S0 Y0 Y1 Y2 Y3

0 0 E 1 1 1

0 1 1 E 1 1

1 0 1 1 E 1

1 1 1 1 1 E

180

3.2.2 DeMultiplexers in

VHDL

• Example for demux:

• Entity Demux is

• Port (S : in std_logic_vector (1 downto 0);

• E : in std_logic;

• Y0, Y1, Y2, Y3: out std_logic

•);

• End Demux;

• Architecture Demux of demux is

• Begin

case S is

When ―00‖ =>

Y0<=E ;

When ―01‖ =>

Y1<=E ;

When ―10‖ =>

Y2<=E ;

When ―11‖ =>

Y3<=E ;

End case ;

• End demux;

181

3.2.3 Comparators

• Comparing two binary words for

equality

A B
A=B?

4 4

1

A0 B0 A1 B1 A2 B2 A3 B3

A=B

PI

CI module Co

Po

PI

CI module Co

Po

PI

CI module Co

Po

PI0 PI1 PIn-1

Po0 Po1 Pon-1

C0 C1 C2
Cn-1

Cn

cascading

input

cascading

output

182

3.2.3 Comparators in VHDL

• Example of four bit equality comparator

• entity eqcomp4 is

• port (A0, B0, A1, B1, A2, B2, A3, B3
: in Std_logic; equals: out std_logic);

• end eqcomp4;

• architecture structure1 of eqcomp4 is

• Signal O0, O1, O2,O3 : Std_logic;

• begin

• O0 <= A0 xor B0;

• O1 <= A1 xor B1;

• O2 <= A2 xor B2;

• O3 <= A3 xor B3;

• Equals <= O0 and O1 and O2 and O3;

• end structure1;

• How to implement cascade comparator in VHDL
?

183

3.2.4 Binary Adders

• Half adders: adds two 1 bit operands X and

Y, producing a 2-bit sum. The lower-order

bit of the sum may be named HS (half sum),

and the higher-order bit may be named CO

(carry out)

• HS= X xor Y=XY‘+X‘Y

• CO=XY

• Full adders: to add operands with more than

one bit, we must provide for carries between

bit positions. The building block for this

operation called full adder.

• Besides the added-bit inputs X and Y, a full

adder has a carry-bit input, Cin.

• Out put is named S (sum) and Cout (carry

out)

• S= X xor Y xor Cin

• Cout=XY+XCin+YCin

184

3.2.4 Binary Adders (cont‘d)

(a) One possible circuit that performs the

full adder equations

(b) The corresponding logic symbol

(c) symbol for cascaded full adders

X Y
Cout Cin

S

X

Y

Cin

S

Cout

full adder

Y S

Cout

(a)

(b)

(c)

X

Cin

1 1

11

1

185

• Entity for a full adder

• entity adder is

• port (X, Y, Cin : in Std_logic;

• S, Cout : out Std_logic);

• end adder;

• Ripple adder : two binary words, each

with n bits, can be added using a ripple

adder– cascade of n full-adder stages,

each of which handles one bit.

• Ripple adder is slow, why ?

• Some other adders ?

X Y
Cout Cin

S

S3

C4

X3 Y3

X Y
Cout Cin

S

S2

C3

X2 Y2

X Y
Cout Cin

S

C2

X1 Y1

X Y
Cout Cin

S

C1

X0 Y0

C0

S1 S0

3.2.4 Binary Adders (cont‘d)

186

3.2.4 Binary Adders in VHDL
• entity rippleadder is

• port (X, Y: in Std_logic_vector(0 to 3);

• S : out std_logic_vector(0 to 3);

• Cout : out Std_logic);

• end rippleadder;

Architecture structure1 of rippleadder is

component adder –pre-defined part type

port (X, Y, Cin : in Std_logic;

• S, Cout : out Std_logic);

End component;

Signal Cout0cin1, cout1cin2, cout2cin3 : in std_logic;

Begin

adder_0: adder port map (X=>X(0), Y=>Y(0),Cin
=>low, S=> s(0), Cout => Cout0cin1);

adder_1: adder port map (X=>X(1), Y=>Y(1),Cin
=>Cout0cin1, S=> s(1), Cout => Cout1cin2);

adder_1: adder port map (X=>X(0), Y=>Y(0),Cin
=>Cout1cin2, S=> s(2), Cout => Cout2cin3);

adder_1: adder port map (X=>X(0), Y=>Y(0),Cin
=>Cout2cin3, S=> s(3), Cout => Cout);

End structure1 ;

X Y
Cout Cin

S

S3

C4

X3 Y3

X Y
Cout Cin

S

S2

C3

X2 Y2

X Y
Cout Cin

S

C2

X1 Y1

X Y
Cout Cin

S

C1

X0 Y0

C0

S1 S0

187

3.2.4 A Design Example:

Recursive Adder/Subtractor

• Objective: Implement an adder and

subtractor using VHDL.

• Design steps

• Define Specifications

• Data Path Design

• Control Path Design

• Simulation

• Hardware Implementation

• Testing

188

3.2.4 Define Specifications

• 4-bit Switch Input A

• 4-bit Switch Input B

• 1 bit switch for Opcode.

• LED output 4 LED for Sum, one for

• Cout, one done signal

• Restricted building blocks:

• An inverter, 2 2N-N mux, three registers

and an adderN.

A B

Sum Cout

OPcode

4 4

4

Done

189

3.2.4 Define Specifications

• Opcode 0, A+B

• example 0101+0111

• Opcode 1, A-B=A+NotB+1

• Example 1100-0011=?

• Adder implementation

• Ripple adder

• fast adder

• Register ? Synchronize the add and

subtract procedure

Q3 Q2 Q1 Q0

D3 D2 D1 D0

Clock
Load

Clear

190

3.2.4 Example : Data Path

191

3.2.4 Example : Data Path

Entity

• Entity DataPath is

• port (A, B in Std_logic_vector(3 downto 0);

• loadA, loadB : in std_logic;

• CK, reset1 ,sw : in std_logic;

• Sum : out std_logic_vector(3 downto 0);

• Cout : out std_logic);

• end Entity DataPath;

• Architecture struture1 of DataPath is

• Signal NotB : std_logic_vector(3 downto 0);

• Signal OutMuxB : std_logic_vector(3 downto 0);

• Signal InternalA, InternalB : std_logic_vector(3
downto 0);

• Signal inC: std_logic;

• Begin

• …

• End architecture structure1;

192

3.2.4 Example : Control Path

• Control Signals in Data Path

• Sw Control the mode

• Reset, reset the output active low

• CK, clock synchronize the calculation

of Sum and sub

• Load A, Load B: allow the input of

register to be loaded into the register.

• Done : High when the calculation is

done, low when the reset is activated.

193

3.2.4 Example : Control Path

194

3.2.4 Example : Final Design

Controller

A

Data Path

Sum

B SW

Cout

enter reset

clk

done

reset1

loadA

loadB

4 4

195

3.2.4 Hardware

Implementation

• Wiring

• Pin assignment

• Programming

• Testing

196

3.2.5 Shift Register

• A shift Register is an n-bit register

with a provision for shifting its stored

data by one bit position at each tick of

the clock. Following is a 4-bit register:

Q3 Q2 Q1 Q0

D3 D2 D1 D0

Clock
Load

Clear

Q

Clk Clr

D

Q

Clk Clr

D

Q

Clk Clr

D

Q

Clk Clr

D

MUX2 to1

I0 I1

S0
MUX2 to1

I0 I1

S0
MUX2 to1

I0 I1

S0
MUX2 to1

I0 I1

S0

clock

clear

Load D3 D2 D1
D0

Q3 Q2 Q1 Q0

197

3.2.5 Shift Register (cont‘d)

• Multi-mode 4 bit shift register

Q3 Q2 Q1 Q0

P3 P2 P1 P0

Clock mode (S1S0)
Clear

L.S.I

2

R.S.I

S1 S0 Mode

0 0 Hold

0 1 Load

1 0 Shift left

1 1 shift right

Q

Clk Clr

D

Q

Clk Clr

D

Q

Clk Clr

D

Q

Clk Clr

D

MUX4 to1

I0 I1 I2 I3

S
MUX4 to1

I0 I1 I2 I3

S
MUX4 to1

I0 I1 I2 I3

S
MUX4 to1

I0 I1 I2 I3

S

clock

clear

Mode

Q3 Q2 Q1 Q0

2

P3 P2
P1

P0L.S.I R.S.I

198

3.2.5 Shift Register in VHDL
• Entity Vshftreg is

• Port(

• Clk, clr,rin,lin : in std_logic;

• S: in std_logic_vector (2 downto 0); --function select

• D: in std_logic_vector(7 downto 0); --data in

• Q: out std_logic_vector (7 downto 0) –data out

•);

• End entity;

• Architecture vshftreg_arch of vshreg is

• Signal Iq: std_logic_vector (7 downto 0);

• Begin

• Process(clk,clr,iq)

• begin

• If(clr=‗1‘) then Iq <= (others=>‘0‘);--asynchronous clear

• Elsif (clk‘event and clk=‗1‘) then

• Case conv_integer(s) is

• When 0 => null; --hold

• When 1=> iq <=D; --load

• When 2 =>iq <=rin & iq(7 downto 1); --shift right

• When 3 => iq <= iq(6 downto 0) & lin; --shift left

• When 4=> iq <=iq(0) & iq(7 downto 1); --circular right

• When 5 => iq <= iq(6 downto 0) & Iq(7); --circular left

• When 6 => iq <=iq(7) & iq(7 downto 1); --shift arith right

• When 7 => iq <=iq(6 downto 0) & ‗0‘; --shift arith left

• When others => null;

• End case;

• End if;

• Q<=iq;

• End process;

• End vshftreg_arch;

199

3.2.6 Counters

• Counter is generally used for any a

clocked sequential circuit whose state

diagram contains a single cycle.

• The modulus of a counter is the number

of states in the cycle

• Counter with m states is called a modulo-

m counter of a divide-by-m counter

S1
S2

S3

S4
S5

Sm

Q Q'

CLK D

Q Q'

T

Use D flip flop to

construct a T Flip flop

200

3.2.6 Counters (cont‘d)

• Ripple counters : can be constructed

with just n flips –flops and no other

components—drawback slow

• Synchronous counters: connect the

inputs to the same common Clk signal.

• Clock period should > propagation

delay.—improvement: synch parallel

counter

Q Q'

T

Q0

Q Q'

T

Q1

Q Q'

T

Q2

Q Q'

T

Q3

Clk

Q Q'

EN T

Q0

Q Q'

T

Q1

Q Q'

T

Q2

Q Q'

T

Q3

Clk

CNTEN

201

3.2.6 Counters (cont‘d)

• LFSR: linear Feedback shift register

counters.

• Many shift register counters have far less

than the maximum of 2n normal states (n-

bit).

• LFSR can have 2n –1 states.

• LFSR is called maximum-length

sequence generator.

• Based on finite field theory Evariste

Galois (1811-1832)

202

3.2.7 Buses

• Bus is a collection of two or more

related signals lines. They are used to

move data around within a system and

among systems.

• Bus are drawn with a double or heavy line

• A slash and a number may indicate how

many individual signal lines are contained

in a bus

• Size may be denoted in the bus name (e.g.

inbus[31..0].

• Why we need a bus?

A

B C A B C

203

3.2.7 Buses (cont‘d)

• Direct connection

• Advantages:

• High bandwidth

• No sharing

required

• Disadvantages:

• Number of

wires increases

rapidly as each

new system is

added

• Bus connection

• Advantages:

• Less wiring

• Easy & cheap to
add a new
system

• Disadvantages:

• Bus becomes a
bottle neck

• Need control
circuitry to
prevent bus
contention

204

3.2.8 Three State Buffers

• Three state buffer or three state driver.

• Three states 0, 1 or Hi-Z

• Various three-state buffers

• A) non-inverting, active high enable

• B) non inverting, active-low enable

• C) inverting, active-high enable

• D) inverting, active-low enable

Bi-directional transceivers

A B

DIR

direction mode

L B to A

H A to B

205

3.2.9 RAM

• RAM: random access memories,

which means that the time it takes to

read or write a bit of memory is

independent of the bits location in the

RAM.

• SRAM (static RAM): once a word is

written at a location, it remains stored

as long as power is applied to the chip.

Unless what ?

• DRAM (dynamic RAM): the data

stored at each location must be

refreshed periodically by reading it

and then writing it back again. Why ?

206

3.2.9 RAM (cont‘d) : a

Simplified Block Diagram of

RAM

Memory Array

d

e

c

o

d

e

r

t ransceiver

a

d

d

r

e

s

s

207

3.3 Impediments to

Synchronous Design

• Synchronous approach is the most
straightforward and reliable method of
digital system design, however…

• Synchronous systems using edge-
triggered flip-flops work properly only
if all flip-flops see the triggering clock
at the same time.

• Clock skew: the situation when the
clock signal arrives at different flip-
flops at different times

• Caused by unequal clock propagation
times

• Clock skew may cause flip-flops to load
transient input signals.

208

3.3.1 Clock Skew : Example

of Clock Skew

IN

Clock

QD D Q

delay

ClockD

Clock

IN

Q1

ClockD

Q2

209

3.3.1 Clock Skew (cont‘d)

• Clock skew are caused by

• Buffering method

• DC and AC loading

• Signals on PCB are auto routed by CAD

• Some wire maybe slower than other

• To control this problem, many high

performance systems and VLSI chips

use a two-phase latch design

Clock
Clock

Clock1

Clock2

Clock

Clock1

Clock2

Clock3

210

3.3.1 Two Phase Clocking

• Popular in custom CMOS ICs

• Standard scheme at IBM

• Advantages:

• Simple memory elements

• Essential hazards avoided

• Clock skew problems avoided

• Disadvantages

• Two separate clock signals are required

• Non-overlapping condition must be
guaranteed to ensure correct operation

Comb.

Logic

Memory Comb.

Logic
Memory

I

N

P

U

T

o

u

t

p

u

tClock1 Clock2

Clock1

Clock2

211

3.3.2 Gating the Clock

• If CLKEN is a state machine output or

other signal produced by a register

clocked by clock, the CLKEN changes

some time after clock has already gone

high. This produces glitches and false

clocking of the registers controlled by

GCLK

• AND gate delays gives GCLK excessive

clock skew, which cause problems.

Clock

GCLK

Clock

CLKEN
GCLK

CLKEN

212

3.3.2 Gating the Clock

(Cont‘d)

• An acceptable way to gate the clock

Clock

Before: GCLK

Clock

CLKEN
GCLK

CLKEN

GClk

CLKEN

213

3.3.3 Asynchronous Input

• There are always asynchronous inputs

• Key input (very low frequency)

• Interrupts

• Status flags

• Solution synchronizer:

Clock

Asyncin

Synchronous

System

Asyncin

Clock

D Q

Syncin

214

3.3.3 Asynchronous Input

(cont‘d)

• It is essential for asynchronous inputs

to be synchronized at only one place

Clock

Asyncin

Synchronous

System

Clock

D Q

Syncin1

Asyncin

D Q

Syncin2

215

3.4 Variable Entered Maps

(VEM)

• Regular K-maps

entries

• 1

• 0

• Don‘t care

• VEM entries

• 1

• 0

• Don‘t care

• Boolean variables

• expressions

• Add the power to K-map method

• Reduce the work to plot and read maps

• A technique to reduce the map size.

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0

1 1 1

0 1

0 0 c'

1 1

A
B

00 01 11 10

0 0 1 1

1 0 1 0

AB
C

A B C F F

0 0 0 0 0

0 0 1 0 0

0 1 0 1 c'

0 1 1 1 c

1 0 0 1 c'

1 0 1 0 0

1 1 0 c'o

1 1 1 co

216

3.4.1 Variable Entered Maps

(cont‘d)

• VEM are most effective when a

function depends strongly on <= 4

inputs and depends only weakly on the

remaining inputs.

• Map Entered variable (MEV) : a

variable that appears in a box in a

VEM

A B C F

0 0 0 f0

0 0 1 f1

0 1 0 f2

0 1 1 f3

1 0 0 f4

1 0 1 f5

1 1 0 f6

1 1 1 f7

0 1

0
c'f0
+cf1

c'f4+
cf5

1
c'f2
+cf3

c'f6+
cf7

A
B00 01 11 10

0 f0 f2 f6 f4

1 f1 f3 f7 f5

AB
C

A B C F

0 0
c'f0+cf1

0 0

0 1
c'f2+cf3

0 1

1 0
c'f4+cf5

1 0

1 1
c'f6+cf7

1 1

217

3.4.2 Plotting the Map

• How to plot a VEM from a truth table

• Select the MEV

• Partition the truth table so that the non-

MEVs have the same values in each

partition

0 1

0 c 1

1 c' 0

B
A B C F1 F2 F3 F4

0 0 0 0 1 0 1

0 0 1 1 0 0 1

0 1 0 1 0 1 0

0 1 1 0 1 1 1

1 0 0 1 0 0 1

1 0 1 1 0 1 0

1 1 0 0 1 1 0

1 1 1 0 1 0

A 0 1

0 c' 0

1 c 1

B
A

0 1

0 0 c

1 1 c'

B
A 0 1

0 1 c'

1 c c

B
A

218

3.4.2 Plotting the Map(cont‘d)

• How to plot a VEM from an equation

• Rearrange the function into S.O.P form

• Identify the most dependant variable

• Factor out the minterms in the identified

variables

• Draw out an map

• Fill in the VEM

• Example :

219

3.4.3 Reading Theory

• Step1: first image that all 1 entries in the map

are replaced by the map entered variables

Ored with its complement. 1=D+D‘

• First loop all single MEV entries that will not loop

with another identical MEV in an adjacent cell or

with a 1 or don‘t care (island).

• Loop all MEV‘s that will loop into duals only with

another identical MEV in an adjacent cell

• Loop all MEV‘s that will loop into a dual only

with a 1.

• Loop all MEV‘s that will loop into a dual only

with a don‘t care.

• Any MEV that will loop two ways with another

identical MEV, 1 or don‘t care but won‘t loop into

a quad, leave until later

• Continue looping in similar fasion for quads and

groups of eight until every MEV has been looped

at least once

220

3.4.3 Reading Theory (cont‘d)

• Step2: once all single MEV entries
have been covered, transform the map
according to the following
transformations:

• A) Replace the MEV and MEV‘ with 0.

• B) 0 to 0, don‘t care to don‘t care

• C) 1 : two possible transformations:

• 1 if not completed covered

• Don‘t care if completed covered, I.e. looped
with both the MEV and MEV‘

• Step3: OR together the terms from
steps 1 and 2

) 0

) () ()

1 cov
cov
cov

cov

D MEV and MEV

E MEV MEV and MEV MEV

if not ered at all or if
just the is ered
if completed ered or
if just thenecessaryterm
is ered

 

   


 




221

3.4.3 Reading Theory (cont‘d)

D

D'

0

0

0 0

D 1

D'

0

0

D

D'

0

0

0 D+D'

D'

0 1

0

1 D+D'

D'

A)

B)

C)
D 1

0

0 1

0

D)

E)

222

3.4.3 Reading Theory

(cont‘d): example1

0 1

0

1

C 0

1 C

given

step1

step2

A
B

0 1

0

1

C 0

C+C' C

A
B

0 1

0

1

C 0

C+C' C

A
B

0 1

0

1

0 0

1 0

A
B

F AC BC AB  

223

3.4.3 Reading Theory

(cont‘d): example2

A B C D F1 F2

0 0 0 0 0

0 0 1 1 0

0 0 1 0 1 1

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 1 1 1

0 1 1 0 1

0 1 1 1 0 1

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 1

1 0 1 1 1 0

1 1 0 0 0 0

1 1 0 1 1

1 1 1 0 0 1

1 1 1 1 0

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

1

2

F BCD AD ABC

F ABD CD AC

  

  

224

3.5 Design Steps for Digital

System Design

1. Define the system specifications

2. Develop a rough design for the

system

3. Develop a detailed design for the

data path

4. Develop a detailed specification for

the controller

5. Complete the design of the controller

6. Finalize the design

7. Simulation and hardware

implementation

225

3.5.1 Step1:Define the System

Specifications

• Define the purpose of the system

• Input, output

• System-level

• Define the system‘s operation

• Algorithms

• flowchart

• Define the operational constrains

• Cost

• Speed

• Size

• Power requirement

• Reliability

• Upgrade ability

• Marketing plans

• Other considerations

226

3.5.2 Step2 : Develop a Rough

Design for the System

• Objectives

• Define the control relationships within

system

• Define basic sequential behavior

• Identify functional units in data path

• Choose signal names

• Graphical illustrations

• Block diagram

• flowchart

227

3.5.3 Step3: Develop a

Detailed Design for the

Data Path

• Objectives

• Fully define the data path

• Documentation aids

• Detailed timing diagram

• Detailed flowchart

• Detailed functional partial partition

228

3.5.4 Step4 : Develop a

Detailed Specification for the

Controller

• Objectives:

• Fully specify the controller behavior

• The operation of the system controller

is completed defined by the detailed

flowchart

• The controller is a synchronous

sequential machine

• It should be expressed as a state

diagram.

• Translate the flow diagram to a state

diagram

229

3.5.4 Step4 : Rules for

Converting Flow Chart to

State Diagram

• Rule1 : Action block in flow

diagram state in the state diagram

action1

action2

condition

Yes

No action1

action2

condition

condition

230

Example

231

3.5.4 Step4 : Rules for

Converting Flow Chart to

State Diagram(cont‘d)

• Rule2: the branching conditions for a

state are derived by tracing through all

possible decision paths from the given

action block to all possible other

action blocks

action1

action2

condition

Yes

No action1

action2

condition

condition

232

Example

233

3.5.4 Step4 : Rules for

Converting Flow Chart to

State Diagram(cont‘d)

• Rule3: Avoid making branching

decisions on more than one

asynchronous variable at a time

A

Data

Skip

term

B C

N

N

N

Y

Y

Y

A

B C

Data'+skip

Data.Skip'.term'

Data.Skip'.term

234

3.5.4 Step4 : Rules for

Converting Flow Chart to

State Diagram(cont‘d)

• Rule3: Avoid making branching

decisions on more than one

asynchronous variable at a time

A

Data

Skip

term

B C

N

N

N

Y

Y

D

B C

term'term

D

A

Data'+skip

Data.skip'

235

3.5.5 Step5: Complete the

Design of the Controller

• Complications:

• Short/brief input pulses

• Asynchronous inputs

• Avoid glitches in the outputs

• Debug and testability features

• Design steps:

• Select a controller architecture

• Deal with synchronous problems

• Select a clock frequency

• Find a suitable state assignment

• Use a state map

• Implement the next state maps

• Plot next state maps

• Design the output decoder

• Plot output maps (if necessary)

• Produce an output list

236

3.5.6 Step6 : Finalize the Design

Controller Data Path Interface

controller

data in

internal
control
signal

data path

data out

external
control
signal

internal
status
signal

external
status
signal

237

3.5.7 Step7: Simulation and

Hardware Implementation

238

3.6 An Example: pop machine

controller

• Requirement:

• Pop machine capable of automatically

dispensing soda pop at 75 cents per

can and make proper change for coin

sequences comprising nickels, dimes,

quarters. The new machine use

existing inventory including coin

receiver, coin changer, and pop drop

mechanism. These three given

subsystems are to be controlled by a

newly designed digital controller.

239

3.6.1 Specs
• Constrains:

• Must operate out of doors

• Must operate in an electrically noisy
environment

• Mean time between failures > 2 months

• Hardware constraints : coin receiver, coin
changer and pop-drop mechanism have
already been chosen.

pop-drop

pop
ready

drop

changer

change
ready

eject

receiver

manual
coin

release

coin drop

coin present

quarter

nickle

dime

clear (L)

240

3.6.1 Specs (cont‘d)

• Time Specs for the coin receiver

quarter

nickle

dime

coin present

• Time Specs for the coin changer

eject

change ready

241

3.6.2 Roughly Define System

Operation

pop-drop

Coin
Changer

Coin
Receiver

System
Controller

Start

Coin

received

ACC

ACC >= 75

ACC= 75

Drop POP
clear ACC

return nickle and

reduce ACC

N

N

NY

Y

Y

242

3.6.2 Roughly Block Diagram

for the Data Path

Combinational
logic

Adder

Coin receiver

Coin type

Coin value

Register

Comparator

75

A>B

A=B

A<B

243

3.6.3 Refined Data Path

Combinational
logic

Adder

Coin type

Coin value

Register

Comparator

75

A>B

A=B

A<B

Coin Receiver
Clear
Drop coin
coin Present

counter
Load
Clear
Count Down

244

3.6.4 Develop a detailed

specification for the controller

Start

Coin

present

a

coin
present

b

c

ACC<75

ACC>75

d f

 pop drop
ready

e

Clear ACC, drop pop

change
ready

N

Y

Y

N

Y

N

N

N

N

f
dec ACC by nickle

245

3.6.5 Complete the Design of

Controller

a

b

c

d

e

f

g

coin present

coin present

coin present

coin present
ACC < 75

ACC > 75ACC = 75

change ready

change ready

pop drop ready

pop drop ready

246

3.6.6 Finalize the Design:

Controller Data Path Interface

Data Path
Control

path

<75

=75

>75

clear ACC

DEC ACC

coin
receiver

coin
changer

pop drop

drop_pop

drop_ready

change_ready

return nickle

clear

coin present

drop coin

coin signal

coin present

247

3.6.7 VHDL Implementation

248

3.6.7 Digital Design

a

b

c

d

e

f

g

coin present

coin present

coin present

coin present
ACC < 75

ACC > 75ACC = 75

change ready

change ready

pop drop ready

pop drop ready

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

249

3.6.7 Digital Design

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

250

251

IV. Design of

Arithmetic

Circuits

252

4. Design of Arithmetic

Circuits

4.1 Introduction to Arithmetic

Circuits

4.2 Number Systems and Codes

4.3 Design of Fast Adders

4.4 Design of Fast Multipliers

4.5 Design of Fast divider

4.6 Floating Point Arithmetic

253

4.1 Introduction to Arithmetic

Circuits

• A large proportion of data that is
collected is numerical data which must
be proceeded arithmetically

• Efficient high-speed hardware
implementations of arithmetic
operations are desirable

• Some arithmetic circuits are
implemented in combinational logic :
addition, subtraction, comparing

• Other arithmetic circuits are too bulky
in Combinational logic : multiplier
Div, Sqt, filtering

• Regular, iterative structure: a recurring
theme in the design of arithmetic
circuits.

254

4.2 Number Systems and

Codes

4.2.1 Positional Number Systems

4.2.2 Octal and Hexadecimal Numbers

4.2.3 General Positional-Number-System

Conversions

4.2.4 Addition and Subtraction of Non-

decimal Numbers

4.2.5 Representation of Negative

Numbers

4.2.6 Two’s Complement Addition and

Subtraction

4.2.7 One’s Complement Addition and

Subtraction

4.2.8 Binary Multiplication

4.2.9 Binary Division

255

4.2.1 Positional Number

Systems

• Traditional number system

• A number is represented by a string of

digits, each digit position has an

associated weight.

• 1734=1*1000+7*100+3*10+4

• 585.55=5*100+8*10+5*1+5*0.1+5*0.01

• 10 is called base or radix

• General : D=dp-1dp-2…d1d0d-1d-2…d-n

• Binary : B=bp-1bp-2…b1b0b-1b-2…b-n

• 100.0012=(?)10

1p
i

i

i n

D d r





1

2
p

i

i

i n

B b






256

4.2.2 Octal and Hexadecimal

Numbers
• Radix 10 is important

• Radix 2 is important

• Radix 8 & 16 ? (When you are 40?)

B Decimal Octal Hex

0000 0 0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 8 10 8

1001 9 11 9

1010 10 12 A

1011 11 13 B

1100 12 14 C

1101 13 15 D

1110 14 16 E

1111 15 17 F

257

4.2.3 General Positional-

Number-System Conversions
• Radix r to decimal conversion

• The value of the number can be found by

converting each digit of the number to its

radix-10 equivalent and expanding the

formula using radix –10 arithmetic

• 436.58=

• D=dp-1dp-2…d1d0d-1d-2…d-n

• =(…((dp-1)*r+dp-2)*r+…)r+d1

1p
i

i

i n

D d r






Binary

Octal

Hex

Decimal

Binary

Octal

Hex

Decimal

258

4.2.4 Addition and

Subtraction of Nondecimal

Numbers

• To add two binary numbers X and Y,

we add together the least significant

bits with an initial carry (cin) of 0,

producing carry (cout) and sum (s)

bits. We continue processing bits from

right to left, adding the carry out of

each column into the next column’s

sum. (Examples)

• Binary subtraction is performed

similarly, using borrow instead of

carries between steps, and producing a

difference bit d. (Examples)

259

4.2.5 Representation of

Negative Numbers
1) Signed Magnitude Representation

• The signed magnitude system is applied

to binary numbers by using an extra bit

position to represent the sign.

• To build a adder and subtractor:

disadvantage and advantage.

2) Complement Number Systems

• Radix complement system, the

complement of an n-digit number is

obtained by subtracting it from rn

• Example (10’s complement, 9’s

complement)

• Two’s complements

• MSB serves as the sign bit

• Examples

260

4.2.5 Representation of

Negative Numbers

Decimal Two’s

complement

One’s

complement

Signed

magnitude

-8 1000

-7 1001 1000 1111

-6 1010 1001 1110

-5 1011 1010 1101

-4 1100 1011 1100

-3 1101 1100 1011

-2 1110 1101 1010

-1 1111 1110 1001

0 0000 1111 or 0000 1000 or 0000

1 0001 0001 0001

2 0010 0010 0010

3 0011 0011 0011

4 0100 0100 0100

5 0101 0101 0101

6 0110 0110 0110

7 0111 0111 0111

261

4.2.6 Two’s Complement

Addition and Subtraction

• Addition

• The results will always be the correct sum

as long as the range of the number system

is not exceeded.

• Overflow detector :

• V=anbnrn’+an’bn’rn (example)

• Subtraction

• Negate the subtrahend by taking its two’s

complement, and then add it to the

minuend using the normal rules for

addition

• Example

262

4.2.7 One’s Complement

Addition and Subtraction

• Addition

• If we start at 1000 (-7) and count up, we

obtain each successive one one’s

complement number by adding 1 to the

previous one, except at the transition from

1111 (0) to 0001 (1)

• Suggestion: perform a standard binary

addition, but add an extra 1 whenever we

count past 1111

• Examples

• Subtraction

• Complement all bits of the subtrahend

and proceed as in addition

263

4.2.8 Binary Multiplication

• Unsigned multiplication

• Shift and Add Multiplication

• Examples

• Signed multiplication

• Two’s complement multiplication

• Example

264

4.2.9 Binary Division

• Unsigned division

• Shift and subtract

• Signed division

• Using unsigned division

• Make the quotient positive if the operands

had the same sign, negative if they has

different signs

• The reminder should be given the same

sign as the division

265

4.3 Design of Fast Adders

• Ripple carry adders

• Decompose addition into bit-wise

operations

• Use the same circuit design for each bit

• Get simple regular structure

• Carry signal ripples from LSB to MSB

X Y
Cout Cin

S

Sn-1

Cn

Xn-1 Yn-1

Cn-1
X Y

Cout Cin
S

C2

X1 Y1

X Y
Cout Cin

S

C1

X0 Y0

C0

S1 S0

266

Full Adder Circuit

• Ci+1=Ci*ai+Ci*bi+ai*bi

• Gate delay from Ci to Ci+1, Ci to Si?

• Critical path analysis:

• Critical path: the signal path that limits the speed

of the circuit

• Delay for n bit ripple carry adder ?

• Advantages: simple,iterative.

• Disadvantages: delays grows proportion to n

X Y
Cout Cin

S

X

Y

Cin

S

Cout

full adder

Y S

Cout

(a)

(b)

(c)

X

Cin

i i i iS =a b c 

267

Full Subtractor Circuit

Gate delay from Bi to Bi+1, Bi to Di?

• Delay for n bit ripple carry adder ?

• Advantages & Disadvantages: same as

ripple carry adder

X Y
Bout Bin

D

F.S

Dn-1

Bn

Xn-1 Yn-1

Bn-1
F.S

B2

X1 Y1

F.S
B1

X0 Y0

B0

D1 D0

00 01 11 10

0

1

XiYi
Bi

00 01 11 10

0

1

XiYi
Bi

Di

Bi

268

2’s Complement subtractors

Gate delay ?

Fast adder solution:

#1 PLA delay?

#2 Find a Compromise Circuit Design

F.A

Dn-1

Cn

Xn-1

Yn-1

Cn-1
F.A

C2

X1

Y1

F.A
C1

X0

Y0

C0

D1 D0

F.A

Dn-1

Cn

Xn-1

Yn-1

Cn-1
F.A

C2

X1

F.A
C1

X0

C0

D1 D0

Mux 2-1

Y1

Mux 2-1

Y0

Mux 2-1

ADD/Subtract

269

Carry Look Ahead Logic

• In the 4-bit “ripple” adder, the carry out of each stage,

Ci+1, is expressed as a function of Xi, Y, and Ci. The

basic idea of carry look ahead logic is to express each

Ci in terms of Xi, Xi-1,…X0, Yi, Yi-1, …Y0, and C0

directly. Delay from C0 to Cn-1?

• Recall C1=X0Y0+X0C0+Y0C0

• Define: generate Gi=XiYi

• propagate Pi=Xi+Yi

• C1= X0Y0+X0C0+Y0C0

• =X0Y0+(X0+Y0)C0=G0+P0C0

• C2=G1+P1C1=G1+P1G0+P0P1C0

• C3=G2+P2C2=G2+P2(G1+P1G0+P0P1C0)

• =G2+P2G1+P2P1G0+P2P1P0C0

• …

F.A

Sn-1

Cn

Xn-1 Yn-1

C1 C0

2

F.A

S1

Cn-1

X1 Y1

2

F.A

S0

X0 Y0

2

Carry Look Ahead Generator

270

4-bit Carry Look- Ahead

Adder (CLA)

F.A

S3

C4

X3 Y3

C1 C0
F.A

S1

C3

X1 Y1

F.A

S0

X0 Y0

C2

F.A

S2

X2 Y2

P3 G3 P2 G2 P1 G1 P0 G0

C1=G0+P0C0

C2=G1+P1C1=G1+P1G0+P1P0C0

C3=G2+P2C2=G2+P2G1+P2P1G0+P2P1P0C0

C4=G3+P3C3=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0C0

Cin
CLA

S

X Y

P G

Cout

44

44 4

271

Cascade 4-bit CLAs

• Time Analysis:

• C0  C4, C4C8, C8C12, C12 

C15, C15 S15

Worst case delay:

• 16-bit ripple carry adder worst case

delay:

• General 4-bit CLAs delay:

C12
CLA

S15-12

P15-12 G15-12

C16 C8
CLA

S11-8

P11-8 G11-8

C4
CLA

S7-4

P7-4 G7-4

C0
CLA

S3-0

P3-0 G3-0

272

Cascade look Ahead

Generator

• G3-0=G3+P3G2+P3P2G1+P3P2P1G0

• P3-0=P3P2P1P0

• G7-4=G7+P7G6+P7P6G5+P7P6P5G4

• P7-4=P7P6P5P4

• G11-8=G11+P11G10+P11P10G9+P11P10P9G8

• P11-8=P11P10P9P8

• G15-12=G15+P15G14+P15P14G13+P15P14P13G12

• P3-0=P15P14P13P12

C12
CLA

S15-12

P15-12 G15-12

C16 C8
CLA

S11-8

P11-8 G11-8

C4
CLA

S7-4

P7-4 G7-4

C0
CLA

S3-0

P3-0 G3-0

C4=G3-0+P3-0C0
C8=G7-4+P7-4G3-0+P7-4P3-0C0

C12=G11-8+P11-8G7-4+P11-8P7-4G3-0+P11-8P7-4P3-0C0

C16=G15-12+P15-12G11-8+P15-12P11-8G7-4+P15-12P11-8P7-4G3-0+P15-12P11-8P7-4P3-0C0

273

Fast 16 bit CLA and CLG

• G15-0=G15-12+P15-12G11-8+P15-12P1-8G7-

4+P15-12P11-8P7-4G3-0

• P15-0=P15-12P11-8P7-4P3-0

• Time Analysis:

• C0  G3-0, G3-0C12, C12C15

• C15S15

• Worst case delay:

• Cascade CLA delay:

• Ripple carry adder delay:

C12
CLA

S15-12

C16 C8
CLA

S11-8

C4
CLA

S7-4

C0
CLA

S3-0

Carry look Ahead Generator

P15-12 G15-12 P11-8 G11-8 P7-4 G7-4 P3-0 G3-0

P15-0 G15-0

274

Fast 64 Bit Adder Based on

CLA and CLG

• Time Analysis:

• C0  G3-0, G3-0G15-0, G15C48,

C48C60, C60C63, C63S63

• Worst case delay:

• Cascade CLA delay:

• Ripple carry adder delay:

• 128 bit CLA +CLG delay:

• General :

CLA CLA CLA CLA

Carry look Ahead Generator

CLA CLA CLA CLA

Carry look Ahead Generator

CLA CLA CLA CLA

Carry look Ahead Generator

CLA CLA CLA CLA

Carry look Ahead Generator

C0

Carry look Ahead Generator

P63-48 G63-48 P47-32 G47-32 P31-16 G31-16 P15-0 G15-0

P63-0 G63-0

275

4.4.1 Combinational

Multipliers

0 0 0 0

0

0

0

0

A
0

A
1

A
2

A
3

B0

B1

B2

B3

P0P1P2P3P4P5P6P7

A B

CO CI

S

Cin
AinSumin

Bin
Bout

Cout Sumout Aout

• Time Analysis:

• Cin  Cout, CinSumout,

• Worst case delay: 2(n-1)+3(n-1)+2(n-1)+3

276

4.4.2 Sequential Add/Shift

Unsigned Multiplier

G P Q Controller

R

Cin=0
counter

0

Cout

n

n

n

n

shift

LSB

ADD

LD LD

count Done

R G P Q operation

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 1 1 0 1 initialize

1 0 1 1 0 1 0 1 1 1 1 0 1 add

1 0 1 1 0 0 1 0 1 1 1 1 0 shift

1 0 1 1 0 0 0 1 0 1 1 1 1 shift

1 0 1 1 0 1 1 0 1 1 1 1 1 add

1 0 1 1 0 0 1 1 0 1 1 1 1 shift

1 0 1 1 1 0 0 0 1 1 1 1 1 add

1 0 1 1 0 1 0 0 0 1 1 1 1 shift

277

4.4.3Booth Re-coded

Multipliers

• Used in the booth multiplication

algorithm

• Consider adjacent bits as follows:

• 0 0 0 1 1 0 1 1

• 0 0 +1 1 -1 0 0 1

• Examples: (MSB is sign bit)

• 01010 100110

• 10011 0110101

278

4.4.3Booth Re-coded

Multipliers (cont’d)

• The Booth Multiplication Algorithm

• Works for arbitrary combinations of

positive and negative in 2’s

complement

• Step1 recode the (positive or negative)

multiplier

• Step2: carry out the multiplication taking

into account the sign of each nonzero

multiplier bit

• Examples: 45*30, and 13*(-16)

• Example (-44)*(-19)

279

4.4.3Booth Multipliers

(implementation)

P Q F

M Weight logic

Cout

n

n

LSB

+/-

2

Add/Sub/Zero

1

MSB

P Q F Operation

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 1 0 initialize

0 1 1 0 0 1 1 0 0 1 0 -M

0 0 1 1 0 0 1 1 0 0 1 shift right

1 1 0 1 0 0 1 1 0 0 1 +M

1 1 1 0 1 0 0 1 1 0 0 shift right

1 1 1 0 1 0 0 1 1 0 0 +0

1 1 1 1 0 1 0 0 1 1 0 shift right

0 1 0 1 0 1 0 0 1 1 0 -M

0 0 1 0 1 0 1 0 0 1 1 shift right

0 0 1 0 1 0 1 0 0 1 1 +0

0 0 0 1 0 1 0 1 0 0 1 shift right

00 +0

01 +M

10 -M

11 +0

-12

-7

M= 10100

 M*=01100

Q=11001

M

Q

280

4.4.3Fast Multipliers

• The booth algorithm can save effort

only when …

• Worst case ?

• Fast multiplication: a modified booth

algorithm that guarantees that no more

than 0.5 n partial products are required

• Idea: consider two booth bits at a time.

multiplier
bit pair

next multiplier

booth bits
equivalent

multiplicand
bit at right

qi+1 qi qi-1

0 0 0 +0+0 0*M

0 0 1 +0+1 +1*M

0 1 0 +1-1 +1*M

0 1 1 +1+0 +2*M

1 0 0 -1+0 -2*M

1 0 1 -1+1 -1*M

1 1 0 +0-1 -1*M

1 1 1 +0+0 0*M

281

4.4.3Fast Multipliers(cont’d)

• Example (-24)*(-19)=101000*101101

• Booth multiplication

• Fast Multiplication

282

4.4.3Fast Multipliers

Implementation

P Q F

M Weight logic

Cout

n+1

n

ALU

3

-2M, -M, +0,+M,+2M

1

MSB

n

1
1

000 +0

001 +M

010 +M

011 +2M

100 -2M

101 -M

110 -M

111 +0

P Q F Operation

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 initialize

1 1 1 0 1 0 0 0 1 1 1 0 1 1 0 1 0 +M

1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 1 0 shift 2 bits

0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 -M

0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 shift 2 bits

0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 -M

0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 shift 2 bits

0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0

0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 shift 2 bits

-24

-19 (101101)

M=101000

(101000)

2M=1010000
-M=011000

-2M=0110000

283

4.5.1 Unsigned Binary

Division

• Division is more complicated to

implement in hardware than

multiplication.

• Division by hand involves conditional

subtraction and shifting

• Hardware implementations of division

are usually sequential approximations

of the hand division algorithm.

• Example : 100010010(dividend)

• 1101(divisor)

284

4.5.2 Purely Combinational

Array Divider

0 0 0

Bin

Divisor Dividend

Quotient
Reminder

F.S • Time delay 3 n2 tg

285

4.5.3 Comparison Method Division

start

Load dividend and divisor;
clear quotient;

first n bits of divident to P.Q. ;
init. bit counter

P.Q.
-divisor
>=0?

P.Q. <-- P.Q.-divisor

Shift P.Q. left one bit and then append
next bit of the dividend; increase bit

counter;

Done? stop

Y

N

YN

286

4.5.3 Comparison Method

Division (cont’d)

P Q

M

Control Logic

n

n

A-B
Bout

0

n+1

B

Divisor

Set Q0

Subtr Shift

A

B P Q operation

1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 load M,Q, clear P

1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 shift P.Q

1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 shift

1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 shift

1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 shift

0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 subtr.+set Q0

1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 shift

0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 subtr. +set Q0

1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 shift

1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 shift

1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 shift

1 0 1 0 1 0 0 0 0 0 1 1 0 0 0

M=01011

01011 100010010

287

4.5.3 Restoring Method for Division

start

Load dividend and divisor;
clear quotient;

first n bits of divident to P.Q. ;
init. bit counter

P.Q.
<0?

Set approprite bit in quotient

Shift P.Q. left one bit and then append
next bit of the dividend; increase bit

counter;

Done? stop

N

Y

Y

N

P.Q. <--- P.Q. -divisor

P.Q. <--- P.Q.+divisor

288

4.5.3 Restoring Method cont’d

P Q

M

Control Logic

n+1

n+1

A-B
Bout

0

n+1

B

Divisor

Set Q0

Subtr Shift

A

n
0

Dividend

N

N

M P Q operation

0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 load M,Q, clear P

0 0 0 0 0 1 0 0 1 0 shift left

1 1 1 0 0 1 0 0 1 0 P <--P-M

0 0 0 0 0 1 0 0 1 0 P<--P+M

0 0 0 0 1 0 0 1 0 0 shift left

1 1 1 0 1 0 0 1 0 0 P<--P-M

0 0 0 0 1 0 0 1 0 0 P<--P+M

0 0 0 1 0 0 1 0 0 0 shift left

1 1 1 1 0 0 1 0 0 0 P<--P-M

0 0 0 1 0 0 1 0 0 0 P<--P+M

0 0 1 0 0 1 0 0 0 0 shift left

0 0 0 0 0 1 0 0 0 1 P<--P-M

0 0 0 0 1 0 0 0 1 0 shift left

1 1 1 0 1 0 0 0 1 0 P<--P-M

0 0 0 0 1 0 0 0 1 0 P<--P+M

M=0100

0100 1001

289

4.5.4 Non Restoring Method for Division

start

Load dividend and divisor;
clear quotient;

first n bits of divident to P.Q. ;
init. bit counter

clear Flag

P.Q.
<0?

Set approprite bit in quotient

Shift P.Q. left one bit and then append
next bit of the dividend; increase bit

counter;

Done?

stop

N

Y

Y

N

P.Q. <--- P.Q. -divisor

Set Flag

Flag ?

Y

N
P.Q. <--- P.Q. +divisor

clear Flag

Flag ? P.Q. <--- P.Q. +divisor
Y

N

290

Start

Load A and B
Clear P

Clear counter

Clear P.A.'s LSB

Counter = n?

A = Quotient
P = Remainder

Left shift P.A. once and
increment counter

P = P - B

P < 0?

Left shift P.A. once and
increment counter

Set P.A.'s LSB

Yes

NO

P = P + B

Counter = n?

YES

YES

Stop

P = P + B

YES

NO

B (n bits)

Shifts

P (n+1 bits) A (n bits)

NO

A

B

Non-restoring Division Dataflow Diagram

A

B

291

4.5.4 Non Restoring Method

for Division (cont’d)

P Q

M

Control Logic

n+1

n+1

A+-B

0

n+1

B

Divisor

Set Q0

Subtr

Shift

A

n
0

Dividend

N

N

Load

F

Set

Clear

M F P Q operation

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 load M,Q, clear P

0 0 0 0 0 0 1 0 0 1 0 shift left

1 1 1 1 0 0 1 0 0 1 0 P=P-M

1 1 1 0 0 1 0 0 1 0 0 shift left

1 1 1 1 0 1 0 0 1 0 0 P=P+M

1 1 1 0 1 0 0 1 0 0 0 shift left

1 1 1 1 1 0 0 1 0 0 0 P=P+M

1 1 1 1 0 0 1 0 0 0 0 shift

0 0 0 0 0 0 1 0 0 0 1 P=P+M

0 0 0 0 0 1 0 0 0 1 0 shift

1 1 1 1 0 1 0 0 0 1 0 P=P+M*

0 0 0 0 0 1 0 0 0 1 0 P=P+M

M=0100

0100 1001

292

4.5.5 Possible Exception

Conditions in Division

• Divide by zero

• Undefined results

• Divide overflow

• Divisor one word (n bit) , dividend two

words (2n bit)

• Possible results that the resulting quotient

occupies n+1 bits when only n bits can be

stored in a word

• Solution

• Using software to avoid exceptions

• Add special hardware to detect exceptions

293

4.6 Floating Point Arithmetic

• Scientific Notation:

• Example : 123456789

• Normalized scientific notation

• 123456789

• Same as scientific notation, except that

there must be exactly one nonzero digit to

the left of the radix point.

• In normalized binary scientific notation,

the bit the left of the radix point must be

1, or else the number is 0.

294

4.6.1 Hardware

Representations of Scientific

Notation

• Given: fixed word width

• Need to find out:

• Number if bits in significant

• Number of bits in exponent

• Representation of negative numbers

• Problem:

• Number of bits in exponent vs. number of

bits in significand

S Exponent Significand

Range accuracy

295

4.6.1 IEEE 754 Floating Point

Standard

• Single precision format (32 bits Wide)

• Double precision format: (64 Bit wide)

• Biased exponents? (logic and

computer design fundamentals)

• The exponent representation employed in

most computers is known as a biased

exponent. The bias is an excess number

added to the exponent so that, internally,

all exponents become positive.

• For single precision format offset=127

• For double precision format ?

1 8 bits 23 bits

1 11 bits 20 bits 32 bits

296

4.6.1 IEEE 754 Floating Point

Standard (cont’d)

• Example #1: Determine the IEEE 754

single precision representation of

• -4.125

• 8.25

• Example #2 determine what decimal

number is represented by following

bits interpreted as a single precision

IEEE 754 Value

1 10000001 00001

1 10110110 1100

297

4.6.2 Floating Point Addition

I. Compare the exponents

I. Shift the significant of the smaller number to

the right to equalize the exponents

II. Add/subtract the significands

III. Normalize the results by either:

I. Shifting right and incrementing exponent

II. Shifting left and decrementing exponent

III. Check for overflow or underflow

IV. Round the significand to the available

number of bits

V. If results is not normalized, then repeat

steps III and IV

298

4.6.2 Floating Point

Addition(cont’d)

Example 0.62510-0.437510

299

4.6.2 Floating Point Addition

Data Path

+/- Exp. Significand +/- Exp. Significand

+/- Exp. Significand

A B
A-B

MUX

incrementer/

decrementer

Left or Right

Shifter

Rounding

Hardware

Right Shifter

MUX MUX

A B
A+B

con

300

4.6.3 Floating Point

Multiplication

• Add the exponents

• Subtract the bias (if any) from the sum

• Multiply the significands

• If necessary, normalize the product resulting

from step I and step 2

• Either shift significand right and add to exponent

• Or shift significand left and subtract from

exponent

• Check the overflow and underflow

• Round the number to the available number of

digits

• Repeat step III and step IV if not normalized

• Obtain the correct sign of the product from

the signs of the original operands

301

4.6.3 Floating Point

Multiplication (cont’d)

• Example 7.25*-6.125

302

V. Digital

System

Testing

303

5. Digital System Testing

5.1 Introduction to Digital System

Testing

5.2 Fault and Fault Models

5.3 Boundary Scan

304

5.1 Introduction to Digital

System Testing

• Highlight of IC

• LSI (1000), VLSI (100000) ULSI (1M)

• Circuit densities: doubling every 18

month

• Reliability up – better testing

• Cost Down

• Yield up

• Testing

• Main purpose of fault testing is the

detection of malfunctions

• Location of the fault may also be desired

305

5.1 Introduction to Digital

System Testing (cont’d)

• Why test IC

• To verify design

• To detect faults arising from manufacture

or ware-out

• To ensure components meet design

specification (parameter)

• Cost of Testing

• IC $X

• PCB board $ 10X

• System $ 100X

• Test cost > 50% production cost

306

5.1 Introduction to Digital

System Testing (cont’d)

• Verification

• A design is checked to meet the

requirement and specifications

• Functions test checks that the circuit

implement the functions that is required,

and does not implement the function that

is not required

• Factors

• Original design specifications

• Delays, hazards

• Routing, layout design rules

• Tools

• Simulators : logic, timing, functions

behavioral

• HDL, VHDL

307

5.1 Introduction to Digital

System Testing (cont’d)

• Testability

• Observability: the internal signals can be

determined at the output

• Controllability: producing an internal

signal value by applying signals to inputs

• Testing method

• Off-line: external + BIT(built in test)

• On-line: BIT (built-in test)

• Example

• Structural testing

Test

Pattern

Generator

Circuit

Under Test

Output

Response

Analyzer

308

5.1 Introduction to Digital

System Testing (cont’d)

• Ideal Testing Environment

• Store the truth table of the circuit

• Apply all possible input combinations

• Examine the output responses

• Real testing environment

• Fault modeling

• Model physical detects by a small number of

faults

• Test pattern generation

• Generate a test pattern

• Output response analysis

• Analyze the circuit output without storing al

the circuit responses

• Fault coverage

• Number of detected faults/ number of

faults modeled

309

5.2 Fault and Fault Models

duration transient

permanent

Physical Cause

Value

Softeware

hardware

analog

digital

global

local

intermittent

determinant

intermittent

• Before testing takes place, it is necessary

to examine failure mechanisms, their

effects and methods of modeling them

310

5.2 Fault and Fault Models

(cont’d)
• Fault characteristics:

• Permanent fault– fault in existence long
enough to be observed at test time

• Transient fault: fault appears and
disappears in short intervals of time

• Intermittent fault: fault which appears and
disappears at regular time intervals

• Faults models

• A logical abstraction describing the
functional effects of a physical failure

• Different levels of modeling are used
based on different primitives

• Block: functional model, block diagram
(data-path)

• Gate: switching level, gates and latches

• Circuit: electrical model, use transistors,
resistors capacitors

• Geometrical-model: layout description of
chip ..

311

5.2.1 Stuck at Fault Model

• Most commonly used fault model

• May consider single or multiple stuck-

at-faults

• The effect of the fault is modeled by

having a line segment stuck at 0 or 1

• All gates are perfect, problem may occur

on line segments.

• Single stuck at fault (SSF)

• Example:

• {x1,x2,x3} : inputs {1 2 3,4,5,6,7,8} : line

segment number, F : correct output

function, F* incorrect output function

X1

X2

X3

1

2

3

4
5

6

7

8 F

F=x1x2+x2x3

1/0: F*=x2x3

2/1: F* =x1+x3

line 1 stuck at 0

line 2 stuck at 1

312

5.2.1 Undetectable Faults

• Undetectable fault: its effect cannot be

seen at the output, no matter what test

pattern is applied

• Problem: redundancy may lead to

undetectability

• Why redundancy?

• How to detect?

• Undetectable faults may lead to problems

in detecting other detectable faults

X1

X2

X3

1

2

3

4
5

6

7

8 F
3/0: F*=?

3/1: F* =?

313

5.2.1 Equivalent Faults

• What is equivalent faults?

• Example1:

• Example 2:

a

b

1

2

F

3/0: F*=?

2/0: F* =?

3 1/0: F* =?

a

b

1

2

F

3/1: F*=?

2/1: F* =?

3 1/1: F* =?

314

5.2.1 Equivalent Faults

(cont’d)

• What is equivalent faults?

• Example1:

• Example 2:

a

b

1

2

F

3 s.a.1 3 s.a.0

2 s.a.1 2 s.a.0

3 1 s.a.1 1 s.a.0

a

b

1

2

F3 Possible faults?

315

5.2.1 Equivalent Faults

(cont’d)

1
2

6

3

4

5

7

8

316

5.2.2 Determine Test Pattern

Generation

• Find a test vector for a given fault

• Fault propagation

• Path sensitization and backtracking

• 1/0 : 1234= 1101,1111,1100

• 3/0 : 1234= 1110

• 3/1 : 1234= 1100

• 4/0 : 1234 = 1111

• 6/1 : 1234 =

• For each of the test faults, find the test vectors

• Remove the redundant one, find the minimum set

1

2

6

3

4

5

7

8

1 s.a.0=2 s.a.0=6 s.a.0=7 s.a.0=8 s.a.0
3 s.a.0=5 s.a.1=4 s.a.1=7 s.a.1
3 s.a.1=5 s.a.0
4 s.a.0

6 s.a.1

8 s.a.1
1 s.a.1
2 s.a.1

317

5.2.2 Determine Test Pattern

Generation (cont’d)

Fault equivalence depends on individual

gates

• AND any input/0 output/0

• Or any input/1 output/1

• NAND any input/0 output/1

• NOR any input/1 output/0

• NOT any input/0 output/1

• any input/1 output/0

1

2

3

318

5.2.2 Determine Test Pattern

Generation (ATPG)

• Given a circuit of n line segments

• There are 2n single stuck at faults

• Fault collapsing reduces 2n faults to k

faults

• For each of the k faults, find a test vectors

• Find a minimal test set from the test

vectors that detect the k faults

• Advantages:
• Short test length

• 100% fault coverage

• Disadvantages:
• very computational

expensive

• Need to store test

vectors

319

5.2.3 Pseudorandom Test

Pattern Generation
• Using an autonomous linear feedback

shift register (ALFSR)

S0 S1 S2
X0

X1 X2 X3

P(X)=X
3
+X+1

Time So S1 S2

T1 0 0 1

T2 1 1 0

T3 0 1 1

T4 1 1 1

T5 1 0 1

T6 1 0 0

T7 0 1 0

320

5.2.3 Pseudorandom Test

Pattern Generation (cont’d)

• Given a degree n P(X) in binary field

• Degree n n stage ALFSR

• If an ALFSR cycles through all 2n-1 non zero

states, it has the maximum length cycle, the

corresponding P(x) is primitive. Otherwise, it is

non primitive

• Example :

• P(x)=X7+X3+X2+1

• Pseudorandom Test Pattern Generation (PTPG)

• Advantages: easy to generate

• No need for storage

• Suitable for built-in self test

• Disadvantages:

• Relative long test length

• Some faults may not be tested?

• Solution

• DO PTPG cover 90-95%

• DO ATPG cover rest

321

5.2.4 An Off-line Test

(signature analysis)

ATPG

+

PTPG

Circuit

under

Test

Data

Compactor

322

5.2.4 An Off-line Test

(Cont’d)

• Example

A

B

C

F

F=AB+BC

323

5.2.4 An Off-line Test

(Cont’d) example

S0 S1 S2
X0

X1 X2 X3
A B C

Circuit under test (CUT)

Time So S1 S2 f

T1 0 0 1 1

T2 1 1 0 1

T3 0 1 1 0

T4 1 1 1 1

T5 1 0 1 1

T6 1 0 0 0

324

5.2.4 An Off-line Test

(Cont’d) example

• At T6, s0s1s2=111 is a fault free signature

S0 S1 S2

CUT ALFSR

Time f So S1 S2

T0 -- 0 0 0

T1 1 1 0 0

T2 1 1 1 0

T3 0 0 1 1

T4 1 0 1 1

T5 1 0 0 1

T6 0 1 1 1

325

5.2.4 An Off-line Test

(Cont’d) example

A

B

C

F

F=AB+BC

5 s.a.1 F*=A+BC

Time So S1 S2 f

T1 0 0 1 1

T2 1 1 0 1

T3 0 1 1 0

T4 1 1 1 1

T5 1 0 1 1

T6 1 0 0 1

326

5.2.4 An Off-line Test

(Cont’d) example

• At T6, s0s1s2=011 is a fault signature

• Fault is detected.

Time f So S1 S2

T0 -- 0 0 0

T1 1 1 0 0

T2 1 1 1 0

T3 0 0 1 1

T4 1 0 1 1

T5 1 0 0 1

T6 1 0 1 1

327

5.3 Boundary Scan

• A design and test technique that allows

circuits to be tested via the board edge

connectors

• I/O hardware is modified in design to

incorporate a programmable shift register

• Overhead minimal as it uses some empty

space around I/O pads

• Problems of board test

• Increasing IC complexity

• Increasing use of surface-mount

technology

328

5.3 Boundary Scan (cont’d)

• Inclusion of programmable shift register

stage adjacent to each I/O pin such that

signals at component boundaries can be

controlled and observed using scan testing

principles

on-chip

logic

Boundary Scan Cell

329

Section II. Fabrication

1. BASIC TRANSISTOR CHARACTERISTICS

1.1 MOSFET Behavior

M metal (gate)

O oxide

S semiconductor

n- <1015 atoms /cm3

n+ >1018 atoms /cm3

Si 5x1022 atoms /cm3

p dopant boron (3 valence electrons)

n dopant phosphorous or arsenic (5 valence electrons)

330

For 0 < VDS < (VGS –VT), the transistor operate in the triode

region, also called the linear region.

Cox: gate oxide capacitance per unit area

When VDS = VGS –VT , the transistor is in the saturation region.

thicknessttypermittivi
t

c

VVVV
L

W
cI

oxox

ox

ox
ox

DSDSTGSoxnD

;;

2

1
)(

2


















2)(
2

TGSoxnD VV
L

W
cI  

The current-voltage relationship in the NMOS transistor

n is the average mobility

of electrons in the channel.

kn‟ = n Cox is called process

transconductance parameter

331

1.2 Voltage Levels in Logic Gates

VDD

Vf

Vx

R

VVkR

For

kRVV

andVVmmLWVAk

For

VV
L

W
kIVR

RR

R
VV

f

DST

GSn

TGSnDDSDS

DS

DS

DD

f

2.0,25

1,1

,5,5.0/0.2/,/60

)(/1/

;

2'

'






















332

1.3 CMOS Inverter

Cross-section of a CMOS inverter

VDD

Vout

Vin

333

2. TECHNOLOGY

There are 4 „basic‟ processes required in IC manufacturing.

• Thin film deposition or growth

• Photolithography

• Etching

• Ion implantation and diffusion

334

The Semiconductor Manufacturing Process

- Wafer Manufacturing

I. Crystal Pulling – Czochralski (CZ) method

• Doped polycrystalline silicon melted at 1400 

• Inert gas atmosphere of high-purity argon

• Single crystal silicon “seed” is placed into the melt

and slowly rotated as it is “pulled out”.

• Single crystalline ingot diameter is determined by a

combination of temperature and extraction speed.

• The ingots are characterized by the orientation of

their silicon crystals. One or two “flats” are ground

into the diameter of the ingot.
II. Wafer slicing

• After characterization, the ingot is sliced into individual

wafers with precision “ID Saw”.

335

III. Wafer lapping, etching

• The sliced wafers are mechanically lapped using a counter-

rotating lapping machine and an aluminum oxide slurry to

flatten the wafer surface, makes them parallel and reduces

mechanical defects.

• Wafers are then etched in a solution of nitride acid / acetic

acid to remove microscopic cracks or surface damage

followed by a series of high-purity RO/DI water baths.

IV. Wafer polishing and Cleaning

• Next, the wafers are polished in a series of combination

chemical and mechanical polishing processes called CMP.

• The polishing process usually involves two or three polishing

steps with progressively finer slurry and intermediate

cleanings using RO/DI water.

• An SC1 solution (ammonia, hydrogen peroxide and RO/DI

water) is used for final cleaning to remove organic impurities

and particles. Next, natural oxide and metal impurities are

removed with HF and finally SC2 solution causes super clean

new natural oxides to grow up on the surface.

336

V. Wafer epitaxial processing

• A process called epitaxy (EPI) is used to grow a layer of

single crystal silicon from vapor onto a single crystal

silicon substrate at high temperatures.

• The growth of a single crystalline silicon layer from the

vapor phase is called vapor-phase epitaxy (VPE).

SiCl4 + 2 H2  Si + 4HCl

(silicontetrachloride)

The reaction is reversible i.e. if HCl is added Si is etched

from the surface of the wafer. Another non-reversible

reaction that produces Si is,

SiH4 Si + 2H2

(silane)

• The purpose of EPI growth is

to create a layer with different,

usually lower, concentration of

electrically active dopant on

the substrate. For example, an

n-type layer on a p-type wafer.

• Approx. 3% of wafer

thickness.

• Contamination free for the

subsequent construction of

tranisistors.

337

The Semiconductor Manufacturing Process
- Photolithography

I. Photoresist coating

• Photoresist is a photo-sensitive material applied to the wafer

in a liquid state in small quantities. The wafer is spun at 1000

to 5000 rpm which spreads the “puddle” into a uniform layer

between 2 and 200 m thick.

• There are two types of photoresist: negative and positive.

- positive – exposure to light breaks down complex molecular

structure, making it easy to be dissolved.

- negative – exposure to light causes molecular structure to

become more complex and more difficult to be dissolved.

The steps involved in each photolithography step are as

follows;

• clean wafers

• deposit barrier layer SiO2,

Si3N4, Metal

• coat with photoresist

• soft bake

• align masks

• expose pattern

• develop photoresist

• hard bake

• etch windows in photoresist

• remove photoresist

338

II. Pattern Preparation

• IC designers design the pattern for each layer using

CAD software. The pattern is then transferred to an

optically clear quartz substrate (reticle) with a chrome

pattern using a laser pattern generator or an e-beam.

339

III. Device layer pattern transfer

• Applying and exposing photoresist to create a device

layer on an actual wafer is similar to the process used

to create reticles. For actual production, a tool called

stepper is used.

340

• After exposure, wafers are developed in either an acid

or base solution to remove the exposed areas of

photoresist.

• Once the exposed photoresist is removed, the wafer is

“soft-baked” at a low temperature to harden the

remaining photoresist.

* Dust particles are the main concern in the

photolithography process. Room air quality is measured

by Class i.e. a Class 10 room has less than 10 dust

particles of size greater than 0.5µm per cubic foot of air.

In order to avoid contamination of the wafer surface with

dust particles wafer processing is carried out in clean

rooms.

III. Develop and Bake

341

The Semiconductor Manufacturing Process
- Etching and Ion Implantation

I. Wet and Dry Etch

• Etching with chemicals takes place at large wet

benches.

•Different types of acid, base and caustic solutions are

used for removing selected areas of different material.

• BOE, or buffered oxide etch, prepared from

hydrofluoric acid buffered with ammonium fluoride is

used to remove silicon dioxide without etching away

underlying silicon or polysilicon layer.

• Phosphoric acid is used to etch silicon nitride layers.

• Nitric acid is used to etch metals.

• Sulfuric acid is used to remove photoresist.

• For dry etch, the wafer is placed into an etching

chamber and etching is done by plasma.

• Personnel safety is a primary concern.

• Many fabs use automated equipment perform the

etching process.

II. Photoresist strip

• The photoresist is then completely stripped off the

wafer, leaving the oxide pattern on the wafer.

342

III. Ion Implantation

• Ion implantation changes the electrical characteristics of

precise areas within an existing layer on the wafer.

• An ion implanter uses a high-current accelerator tube

and steering and focusing magnets to bombard the surface

of the wafer with ions of a particular dopant.

• For the MOSFET

example, the oxide acts as

a barrier when dopant

chemicals are deposited on

the surface and diffused

into the surface.

• Annealing is done by

heating the silicon surface

to 900C. The implanted

dopant ions diffuse further

into the silicon wafer.

343

SiO2 grows thermally when silicon is in the presence of

oxygen. Oxygen comes from oxygen gas or water vapor. A

temperature of 900 to 1200 oC is required.

The chemical reactions that occur are

• Si + O2 -> SiO2

• Si +2H2O -> SiO2 + 2H2

• The surface of the silicon wafer after selective oxidation

will appear as follow,

• Both oxygen and water will diffuse through the existing

SiO2 and combine with Si to form additional SiO2. Water

(steam) diffuses easier than oxygen, hence there is a much

faster growth rate with steam.

• Oxide is used to provide insulating and passivation layers

and form transistor gates. Dry O2 is used to form gates and

thin oxide layers. Steam is used to form thick oxide layers.

Insulating oxide layers are usually about 1500 Å and gate

layers are usually between 200 Å to 500 Å.

Si
SiO2

54%-55%

46%-45%

The Semiconductor Manufacturing Process
- Thin Film Deposition

I. Silicon oxidation

344

gas

pump

wafers

quartz tube

Heating coils

II. Chemical Vapor Deposition

• Chemical Vapor Deposition (CVD) forms thin films on the

surface of the substrate by either thermal decomposition and/or

reaction of gaseous compounds.

• There are three basic types of reactors for CVD,

• atmospheric chemical vapor deposition

• low pressure CVD (LPCVD)

• plasma enhanced CVD (PECVD)

• A sketch of a Low Pressure CVD process is show below,

345

i) Polysilicon

600oC

SiH4  Si +2 H2

Deposits 100 to 200 Å /min
• Phosphorous (phosphine), Boron (Diborane) or Arsenic gases

can be addded. Polysilicon can also be doped with diffusion

gases after it has been deposited.

ii) Silicon Dioxide

300 to 500oC

SiH4 + O2  SiO2 + 2 H2
• SiO2 is used as an insulator or passivation layer. Usually

phosphorous is added to give better „flow‟ properties.

iii) Silicon Nitride

3SiH4 + 4NH3  Si3N4 + 12 H2

(silane) (ammonia) (nitride)

346

III. Sputtering

If a target is bombarded with high energy ions such as Ar+

then atoms in the target will be dislodged and transported to

the substrate.

Metals such as Al, Ti can be used as a target.

IV. Evaporation

If Al or Au (gold) is heated to the point of evaporation then

the vapor will condense and form a thin film that covers the

surface of the wafer.

347

Example: Inverter Mask Set

GND V
DD

Y

A

substrate tap well tap

nMOS transistor pMOS transistor

p substrate

p substrate

SiO
2

p substrate

SiO
2

Photoresist

348

p substrate

SiO
2

Photoresist

p substrate

SiO
2

Photoresist

p substrate

SiO
2

n well

SiO
2

p substrate

n well

349

Thin gate oxide

Polysilicon

p substrate
n well

Polysilicon

p substrate

Thin gate oxide

Polysilicon

n well

p substrate
n well

p substrate
n well

n+ Diffusion

350

n well
p substrate

n+n+ n+

n well
p substrate

n+n+ n+

p+ Diffusion

p substrate
n well

n+n+ n+p+p+p+

p substrate

Thick field oxide

n well

n+n+ n+p+p+p+

Contact

351

p substrate

Metal

Thick field oxide

n well

n+n+ n+p+p+p+

Metal

• Six masks

– n-well

– Polysilicon

– n+ diffusion

– p+ diffusion

– Contact

– Metal

Metal

Polysilicon

Contact

n+ Diffusion

p+ Diffusion

n well

352

The Semiconductor Manufacturing Process
- Post-processing

I. Probe Test and Wafer Dicing

• After the final passivation layer and backside prep,

automated methods are used to test the device on the wafer.

• A probe tester is used to check the operation of the device.

Devices that fail the test are marked with colored dye.

• After probe test, the wafer is diced into individual die.

II. Wire Bonding and Packing

• Individual devices are attached to a lead frame and

aluminum or gold leads are attached via thermal compression

or ultrasound welding.

• The packaging is completed by sealing the device into a

ceramic or plastic package.

	coverpage
	outline
	notesbody2018.pdf

