
Debugging of VHDL Hardware Designs
on Intel’s DE-Series Boards

For Quartus® Prime 21.1

1 Introduction

This tutorial presents some basic debugging concepts that can be helpful in creating VHDL designs for implemen-
tation on Intel’s DE-series boards. It shows how Intel® Quartus® Prime tools can help in the debugging task.

The reader is expected to be familiar with the RTL Viewer and Signal Tap Logic Analyzer tools included in Intel’s
Quartus Prime software. Also, a basic knowledge of simulation is needed.

Contents:

• Example Circuit

• Quartus Prime Tools for Use in Debugging of Hardware Designs

• Debugging Concepts

• Sources of Errors in VHDL Designs

• Design Procedure

FPGAcademy.org
Mar 2022

1

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

2 Background

Designers of digital systems are inevitably faced with the task of debugging their imperfect initial designs. This task
becomes more difficult as the system grows in complexity. The debugging process requires determination of possible
flaws in the designed circuits. This tutorial introduces some basic debugging concepts that can help in designing of
circuits specified in VHDL. The tutorial focuses on the debugging of digital hardware. A related tutorial, Debugging
of Application Programs on Intel’s DE-Series Boards, deals with the debugging of software programs that are run
by Intel’s Nios® II processor implemented on a DE-series board.

To clarify the concepts used in debugging, we will show how these concepts may be applied to an example circuit.

3 Example Circuit

To make the tutorial easy to follow, we use a relatively simple digital circuit. Our circuit is a tester that can be
used to test the reaction time of a person to a visual stimulus. The user initiates the test by pressing and releasing a
pushbutton key, KEY1. After some delay (of at least four seconds) the circuit turns on a light. In response, the user
presses another key, KEY2, as quickly as possible, which results in turning the light off and displaying the elapsed
time in hundredths of a second on the 7-segment displays on the DE-series board.

A block diagram of the circuit is given in Figure 1. The circuit is designed in hierarchical manner, where a number
of subcircuits are used to implement the simple tasks. This is a good design practice and the resulting circuit is easier
to understand and debug.

Since the pushbutton keys on the DE-series board produce a logic value 0 when pressed, we have chosen to create
inverted signals with more meaningful names as follows:

reset = !KEY0

request_test = !KEY1

stop_test = !KEY2

When the request_test signal goes to 1, the run signal is activated, which enables the counter circuit that generates
the start_test signal after a delay of about four seconds. The start_test signal activates the test_active signal which
causes the green light, LEDG0, to be turned on. At this point the four-digit binary-coded-decimal (BCD) counter
starts counting in one-hundredth of a second. It is enabled by a pulse (one clock cycle in duration) produced
every one-hundredth of a second by the counter circuit called hundredth. The four BCD digits, BCD0 to BCD3,
are decoded by the BCD-to-7-segment decoder circuits and displayed on the 7-segment displays, HEX0 to HEX3.
The clear signal, which is generated when either reset or stop_test signal is activated by pressing the respective
pushbutton, brings the control signals run and test_active to 0, which freezes the BCD count at its present value.

The VHDL code for the top-level module, which corresponds to the block diagram in Figure 1, is given in Figure 2.
The entity is called the reaction_tester. It instantiates modules for each of the subcircuits shown in Figure 1. The
statements are numbered for ease of reference in the discussion below. The subcircuits are specified as shown in
Figures 3 to 13.

2 FPGAcademy.org
Mar 2022

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

Figure 1. The reaction-tester circuit.

1 LIBRARY ieee ;
2 USE ieee.std_logic_1164.all ;
3 USE ieee.std_logic_unsigned.all ;
4 ENTITY reaction_tester IS
5 PORT (CLOCK_50 : IN STD_LOGIC ;
6 KEY : IN STD_LOGIC_VECTOR(2 DOWNTO 0) ;
7 HEX3, HEX2, HEX1, HEX0 : OUT STD_LOGIC_VECTOR(0 TO 6) ;
8 LEDG : OUT STD_LOGIC_VECTOR(0 DOWNTO 0)) ;
9 END reaction_tester ;

Figure 2. VHDL code for the top-level module of the example system. (Part a)

FPGAcademy.org
Mar 2022

3

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

10 ARCHITECTURE top_level OF reaction_tester IS
11 SIGNAL reset, request_test, stop_test, clear, sec_100th : STD_LOGIC ;
12 SIGNAL run, start_test, test_active, enable_bcd : STD_LOGIC ;
13 SIGNAL BCD3, BCD2, BCD1, BCD0 : STD_LOGIC_VECTOR(3 DOWNTO 0) ;
14 COMPONENT control_ff
15 PORT (Clock, ff_in, Clear : IN STD_LOGIC ;
16 Q : BUFFER STD_LOGIC) ;
17 END COMPONENT ;
18 COMPONENT hundredth
19 PORT (Clock, Load : IN STD_LOGIC ;
20 pulse_500k : OUT STD_LOGIC) ;
21 END COMPONENT ;
22 COMPONENT delay_counter
23 PORT (Clock, Clear, Enable : IN STD_LOGIC ;
24 Start : OUT STD_LOGIC) ;
25 END COMPONENT ;
26 COMPONENT BCD_counter
27 PORT (Clock, Clear, Enable : IN STD_LOGIC ;
28 BCD3, BCD2, BCD1, BCD0 : BUFFER STD_LOGIC_VECTOR(3 DOWNTO 0)) ;
29 END COMPONENT ;
30 COMPONENT bcd7seg
31 PORT (bcd : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
32 display : OUT STD_LOGIC_VECTOR(0 TO 6)) ;
33 END COMPONENT ;
34 BEGIN
35 reset <= NOT (KEY(0)) ;
36 request_test <= NOT (KEY(1)) ;
37 stop_test <= NOT (KEY(2)) ;
38 clear <= reset OR stop_test ;
39 enable_bcd <= test_active AND sec_100th ;
40 LEDG(0) <= test_active ;
41 run_signal: control_ff PORT MAP(CLOCK_50, request_test, clear, run) ;
42 test_signal: control_ff PORT MAP(CLOCK_50, start_test, clear, test_active) ;
43 hundredth_sec: hundredth PORT MAP(CLOCK_50, enable_bcd, sec_100th) ;
44 foursec_delay: delay_counter PORT MAP(CLOCK_50, clear, run, start_test) ;
45 bcdcount: BCD_counter PORT MAP(CLOCK_50, request_test, enable_bcd, BCD3,

BCD2, BCD1, BCD0) ;
46 digit3: bcd7seg PORT MAP(BCD3, HEX3) ;
47 digit2: bcd7seg PORT MAP(BCD2, HEX2) ;
48 digit1: bcd7seg PORT MAP(BCD1, HEX1) ;
49 digit0: bcd7seg PORT MAP(BCD0, HEX0) ;
50 END top_level ;

Figure 2. VHDL code for the top-level module of the example system. (Part b)

The subcircuit in the control_ff modules is defined in Figure 3. It generates an output signal that goes high when the
data input ff_in goes high, and then maintains this signal, even if ff_in becomes low again, until it is cleared by a

4 FPGAcademy.org
Mar 2022

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

signal on the Clear input. Note that while the inputs may be asynchronous (being connected to pushbutton switches),
the operation is synchronized by the clock signal. A circuit generated from this code is displayed in Figure 4.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
ENTITY control_ff IS

PORT (Clock, ff_in, Clear : IN STD_LOGIC ;
Q : BUFFER STD_LOGIC) ;

END control_ff ;
ARCHITECTURE control_circuit OF control_ff IS
BEGIN

PROCESS (Clock)
BEGIN

IF Clock’EVENT AND Clock = ’1’ THEN
IF Clear = ’1’ THEN

Q <= ’0’ ;
ELSE

Q <= ff_in OR Q ;
END IF ;

END IF ;
END PROCESS ;

END control_circuit ;

Figure 3. Code for the control_ff circuit.

Figure 4. The control_ff circuit.

Figure 5 presents the code for the delay counter module, delay_counter. This is a 28-bit up-counter. Its most-
significant bit, b27, goes to 1 after about four seconds. It is used as the start_test signal. The code produces the
circuit in Figure 6. Note that the counter is implemented as a 28-bit register (represented by the flip-flop symbol),
and an adder which increments the contents of the register by 1.

FPGAcademy.org
Mar 2022

5

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;
ENTITY delay_counter IS

PORT (Clock, Clear, Enable : IN STD_LOGIC ;
Start : OUT STD_LOGIC) ;

END delay_counter ;
ARCHITECTURE delay_circuit OF delay_counter IS

SIGNAL delay_count : STD_LOGIC_VECTOR(27 DOWNTO 0) ;
BEGIN

PROCESS (Clock)
BEGIN

IF Clock’EVENT AND Clock = ’1’ THEN
IF Clear = ’1’ THEN

delay_count <= (OTHERS => ’0’) ;
ELSIF Enable = ’1’ THEN

delay_count <= delay_count + ’1’ ;
END IF ;

END IF ;
END PROCESS ;
Start <= delay_count(27) ;

END delay_circuit ;

Figure 5. Code for the delay_counter circuit.

Figure 6. The delay_counter circuit.

Figure 7 gives the code that defines the hundredth subcircuit. This is a down-counter which generates an output
pulse whenever the contents reach the value 0. To produce the interval of one hundredth of a second, the counter
is repeatedly loaded with the value (7A120)16 which corresponds to 500,000. The output of this circuit, sec_100th,
allows the BCD counter to be incremented 100 times each second as long as the green light is on. The circuit is
shown in Figure 8. This counter is implemented as a 20-bit register (represented by the flip-flop symbol), and an
adder which decrements the contents of the register by 1.

6 FPGAcademy.org
Mar 2022

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;
ENTITY hundredth IS

PORT (Clock, Load : IN STD_LOGIC ;
pulse_500k : OUT STD_LOGIC) ;

END hundredth ;
ARCHITECTURE hundredth_circuit OF hundredth IS

SIGNAL count_500k : STD_LOGIC_VECTOR(19 DOWNTO 0) ;
BEGIN

PROCESS (Clock)
BEGIN

IF Clock’EVENT AND Clock = ’1’ THEN
IF Load = ’1’ THEN

count_500k <= X"7A120" ;
ELSE

count_500k <= count_500k - ’1’ ;
END IF ;

END IF ;
END PROCESS ;

pulse_500k <= ’1’ WHEN (count_500k = X"00000") ELSE ’0’ ;
END hundredth_circuit ;

Figure 7. Code for the hundredth circuit.

Figure 8. The hundredth circuit.

The BCD counter is specified by the code in Figure 9. The circuit for each of the four BCD digits is defined in the
module BCD_stage. Four versions of this circuit are instantiated in the module BCD_counter. Figures 10 and 11
depict the circuits synthesized from the modules BCD_counter and BCD_stage, respectively.

FPGAcademy.org
Mar 2022

7

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;
ENTITY BCD_counter IS

PORT (Clock, Clear, Enable : IN STD_LOGIC ;
BCD3, BCD2, BCD1, BCD0 : BUFFER STD_LOGIC_VECTOR(3 DOWNTO 0)) ;

END BCD_counter ;
ARCHITECTURE four_digits OF BCD_counter IS

SIGNAL Carry : STD_LOGIC_VECTOR(4 DOWNTO 1) ;
COMPONENT BCD_stage

PORT (Clock, Clear, Ecount : IN STD_LOGIC ;
BCDq : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Value9 : OUT STD_LOGIC) ;

END COMPONENT ;
BEGIN

stage0: BCD_stage PORT MAP(Clock, Clear, Enable, BCD0, Carry(1)) ;
stage1: BCD_stage PORT MAP(Clock, Clear, (Carry(1) AND Enable), BCD1,

Carry(2)) ;
stage2: BCD_stage PORT MAP(Clock, Clear, (Carry(2) AND Carry(1) AND Enable),

BCD2, Carry(3)) ;
stage3: BCD_stage PORT MAP(Clock, Clear, (Carry(3) AND Carry(2) AND Carry(1)

AND Enable), BCD3, Carry(4)) ;
END four_digits ;
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;
ENTITY BCD_stage IS

PORT (Clock, Clear, Ecount : IN STD_LOGIC ;
BCDq : BUFFER STD_LOGIC_VECTOR(3 DOWNTO 0) ;
Value9 : OUT STD_LOGIC) ;

END BCD_stage ;
ARCHITECTURE digit OF BCD_stage IS
BEGIN

PROCESS (Clock)
BEGIN

IF Clock’EVENT AND Clock = ’1’ THEN
IF Clear = ’1’ THEN BCDq <= "0000" ;
ELSIF Ecount = ’1’ THEN

IF BCDq = "1001" THEN BCDq <= "0000" ;
ELSE BCDq <= BCDq + ’1’ ;
END IF ;

END IF ;
END IF ;

END PROCESS ;
PROCESS (BCDq)
BEGIN

IF BCDq = "1001" THEN Value9 <= ’1’ ;
ELSE Value9 <= ’0’ ;
END IF ;

END PROCESS ;
END digit ;

Figure 9. Code for the BCD_counter circuit.
8 FPGAcademy.org

Mar 2022

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

Figure 10. The BCD_counter circuit.

Figure 11. The BCD_stage circuit.

Each digit of the BCD counter is converted into a seven-bit pattern suitable for display on a 7-segment display on
the DE-series board. This is accomplished by using the circuit bcd7seg, which is specified by the code in Figure 12.
Note that the comment in the code shows the labeling of the segments that corresponds to the implementation on the
DE-series board.

FPGAcademy.org
Mar 2022

9

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
ENTITY bcd7seg IS

PORT (bcd : IN STD_LOGIC_VECTOR(3 downto 0) ;
display : OUT STD_LOGIC_VECTOR(0 TO 6)) ;

END bcd7seg ;
-- ---
-- | 0 |
-- 5 | | 1
-- | |
-- ---
-- | 6 |
-- 4 | | 2
-- | |
-- ---
-- 3

ARCHITECTURE seven_seg OF bcd7seg IS
BEGIN

PROCESS (bcd)
BEGIN

CASE bcd IS
WHEN "0000" =>

display <= "0000001" ;
WHEN "0001" =>

display <= "1001111" ;
WHEN "0010" =>

display <= "0010010" ;
WHEN "0011" =>

display <= "0000110" ;
WHEN "0100" =>

display <= "1001100" ;
WHEN "0101" =>

display <= "0100100" ;
WHEN "0110" =>

display <= "1100000" ;
WHEN "0111" =>

display <= "0001111" ;
WHEN "1000" =>

display <= "0000000" ;
WHEN "1001" =>

display <= "0001100" ;
WHEN OTHERS =>

display <= "1111111" ;
END CASE ;

END PROCESS ;
END seven_seg ;

Figure 12. Code for the BCD-to-7-segment decoder circuit.

10 FPGAcademy.org
Mar 2022

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

Figure 13 gives a circuit that may result from the code in Figure 12. Each segment of the 7-segment display is driven
by a signal generated by a simple decoder from the four bits of a BCD digit. The figure shows only a part used to
drive two of the segments, display0 and display6. Each decoder realizes the assignment indicated in Figure 12. Note
that the segments of a 7-segment display are illuminated when a ground signal, logic 0, is applied to them. They are
turned off when a high-voltage signal, logic 1, is applied.

While Figure 13 shows specific decoder circuits, it is important to keep in mind that the Quartus Prime compiler
may synthesize different looking circuits but with the same functionality.

We will use our example circuit to illustrate the debugging process. To get the most out of this tutorial, create a new
Quartus Prime project, compile the circuit, and follow the discussion by performing the various tasks on your design.
All of the files involved in the design are provided with this tutorial. Ensure that the included Quartus Prime project
is configured for the FPGA on your DE-series board, and that you have the right pin-assignment file. Pin-assignment
files can be found on the University Program website; simply navigate to the materials section of your DE-series
board’s page.

Before starting the discussion of debugging, we will consider some Quartus Prime tools that make the debugging
task easier.

FPGAcademy.org
Mar 2022

11

https://www.altera.com/support/training/university/boards.html
https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

Figure 13. The bcd7seg circuit.

4 Quartus® Prime Tools for Use in Debugging of Hardware Designs

The Quartus Prime software includes many tools that are useful for a variety of purposes. We will discuss three
types of tools: Netlist Viewers, SignalTap Logic Analyzer, and Simulator. While their use is broader, we will restrict
our discussion to their utility as debugging aids.

4.1 Netlist Viewers

The Netlist Viewers provide a graphical indication of a synthesized circuit. A register transfer level (RTL) view of
a designed circuit, generated after the initial synthesis, can be seen by using the RTL Viewer. A view of the final
implementation, obtained after technology mapping, is available through the Technology Map Viewer. If a designed
circuit involves a finite state machine, a diagram of this FSM can be examined by means of the State Machine Viewer.

12 FPGAcademy.org
Mar 2022

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

4.1.1 RTL Viewer

The RTL Viewer provides a block diagram view of a circuit, at the level of registers, flip-flops and functional blocks
that constitute the design. The displayed image is the circuit generated after the analysis and initial synthesis steps.
It is not necessary to wait for the rest of the compilation process to be completed, which includes placing and routing
the designed circuit. Using the project with our example circuit, activate the initial synthesis process by clicking on

the Start Analysis & Synthesis icon in the toolbar. Should this icon not be displayed in the toolbar, it can be
found by selecting Processing > Start > Start Analysis & Synthesis, or by right-clicking the toolbar area and
selecting Standard to make the icon appear. Upon performing the synthesis, select Tools > Netlist Viewers > RTL
Viewer to reach the window depicted in Figure 14. The view of the circuit can be enlarged or reduced by means of
the Zoom Tool. The complete circuit is given in Figure 15.

Figure 14. The RTL Viewer.

FPGAcademy.org
Mar 2022

13

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

Figure 15. The complete RTL view of the reaction-tester circuit.

Double-clicking on any block of the displayed circuit will reveal a more detailed structure of this block. For example,
doing this on the block labeled "control_ff:run_signal" produces the image in Figure 16. This is the circuit that we
anticipated in Figure 4.

Figure 16. The RTL Viewer presentation of the control_ff circuit.

14 FPGAcademy.org
Mar 2022

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

The RTL Viewer is a very useful debugging aid. It allows the designer to quickly see the structure of the circuit that
is being designed. It shows the connections between functional blocks. Names of the signals on the connecting wires
can be seen by hovering the mouse over the wires, which makes it easy to trace the signals. The displayed diagram
includes only those circuit blocks that are driven by valid inputs and produce outputs that connect to other blocks or
pins on the FPGA device. Thus, if an expected block is missing, it is very likely that the VHDL specification of the
corresponding inputs or outputs is incorrect.

Since the RTL Viewer displays the circuit obtained after the initial synthesis (without needing to perform a complete
compilation), it takes relatively little time to see the effect of any changes that are made in the design.

4.1.2 Technology Map Viewer

The Technology Map Viewer can be used to examine a circuit that was compiled. It displays not only the structure
of the circuit, but it also indicates the details of logic cells that are used to implement the various parts of the circuit.
It is activated by selecting Tools > Netlist Viewers > Technology Map Viewer (Post-Fitting). Figure 17 shows a
portion of the displayed image for our example circuit. Double-clicking on a particular block displays the details of
the block.

The displayed image indicates how the designed circuit is implemented in a specific technology. On the DE-series
board this is the technology of the Cyclone® series FPGA.

Figure 17. The Technology Map Viewer.

FPGAcademy.org
Mar 2022

15

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

4.1.3 State Machine Viewer

If a state machine exists in your design, the State Machine Viewer can be used to examine the implementation of
FSMs that are a part of a designed circuit. It is accessed by selecting Tools > Netlist Viewers > State Machine
Viewer.

The FSM implementation is depicted in both graphical and tabular forms. The encoding of states is also presented.

4.2 SignalTap Logic Analyzer

A traditional Logic Analyzer is an instrument that can display waveforms that correspond to signals obtained by
connecting probes to various points in an implemented circuit. For an FPGA device, it is only possible to gain
such access to external pins. However, Quartus Prime software includes a software-implemented tool that acts as
a virtual logic analyzer, which allows the user to examine signals that are going to occur anywhere within a circuit
implemented in an FPGA chip. It is called the SignalTap II Embedded Logic Analyzer. Its use is described in the
tutorial SignalTap II with VHDL Designs.

Figures 18 and 19 indicate how the analyzer may be used on our example circuit. We chose to look at several signals
that are affected by the start_test signal going to 1. As seen in Figure 18, a positive edge of this signal is enabled as
the trigger that causes the analyzer to take a snapshot of signal activity. Figure 19 shows the waveforms that occur
at trigger time. Observe that the test_active signal goes to 1 in the next clock cycle (as expected). Also, observe that
the contents of the hundredth counter, called count_500k in Figure 7, are decremented by 1 in each clock cycle.

It is important to know that the Quartus Prime Compiler will not necessarily preserve the exact names of signals in
combinational logic as defined in a VHDL design file. Also, when the Node Finder is used to find signals that the
designer wants to include in the Setup window of the SignalTap Logic Analyzer, many signals that are not registered
or found on the FPGA pins may not be listed. It is possible to force the listing of a particular signal under its original
name by means of the "keep" option, which is invoked by defining the attribute keep. For example, we can ensure
that the run and enable_bcd signals will be preserved and listed by inserting in the code in Figure 2 the following
statements:

ATTRIBUTE keep: BOOLEAN ;
ATTRIBUTE keep OF run: SIGNAL IS true ;
ATTRIBUTE keep OF enable_bcd: SIGNAL IS true ;

Using the keep option may result in a slightly different circuit being synthesized. The circuit will have the same
functionality as the intended circuit, but it may have a slightly different timing behavior. Therefore, upon successful
completion of the debugging (or simulation) task, the modifications inserted to invoke the keep option should be
removed.

16 FPGAcademy.org
Mar 2022

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

Figure 18. The Setup window of SignalTap Logic Analyzer.

Figure 19. The Data window of SignalTap Logic Analyzer.

4.3 Simulators

The tools discussed above are very useful in determining whether or not a given circuit appears to have the desired
structure and functionality. To test the expected functional correctness and performance of the designed circuit it is
useful to simulate the circuit. For example, a circuit that performs extensive arithmetic operations may appear to
be designed correctly in terms of the components it contains, but a small error in detail (which could be difficult to
detect using either a netlist viewer or the logic analyzer) can cause wrong results to be produced when a particular
operation is performed. Functional simulation provides an excellent vehicle for ascertaining that the circuit performs
correctly as far as its functionality is concerned. It is also important to ensure that the timing behavior of the circuit
meets the specification requirements, which can be determined by means of timing simulation.

FPGAcademy.org
Mar 2022

17

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

A complete simulation of our example circuit would require a large number of clock cycles, making it difficult to
produce an informative display. However, we can perform a meaningful simulation by scaling down some param-
eters. For example, let us reduce the delay_counter circuit to be a 4-bit counter so that the start_test signal will go
to 1 after a delay of 8 clock cycles. Let us also reduce the hundredth counter to be a 3-bit counter into which the
value 4 is loaded whenever the Load signal is active. A functional simulation of this scaled-down circuit is shown in
Figure 20.

We applied the input signals that correspond to the pushbutton keys. The observed behavior of the simulated circuit
is correct. The BCD counter evaluates correctly the number of sec_100th pulses that occur before the KEY2 signal
goes to 0 (which corresponds to pressing of the pushbutton). The BCD-to-7-segment decoders also correctly decode
the BCD digits, which is easily verified by examining the displayed patterns.

Remember to invoke the "keep" option on the appropriate signals in lines 11 to 13 in Figure 2 by defining the attribute
keep.

The simulation indicates that our circuit produces a slightly inaccurate result. Before the test starts, the hundredth
counter runs in a counting span of 8 clock cycles, as shown by the sec_100th signal in Figure 20. During the test this
span becomes 4 cycles, because this is the value repeatedly loaded into the counter. However, at the very beginning
of the test the counter may contain the value 7, which means that it will take 8 clock cycles before the BCD counter
starts counting. This means that our tester circuit may be wrong by 1/100th of a second. If we could not tolerate this
inaccuracy, we would have to modify the circuit.

Figure 20. The result of functional simulation.

18 FPGAcademy.org
Mar 2022

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

Quartus Prime software includes the simulation tools. They are described in the tutorial Introduction to Simulation of
VHDL Designs. We encourage the user to use the ModelSim simulator, particularly when large circuits are involved.

5 Debugging Concepts

Debugging of complex logic circuits can be difficult. The task is made easier if one uses an organized approach with
the aid of debugging tools. The debugging task involves:

• Observing that there is a problem

• Identifying the source of the problem

• Determining the design changes that have to be made

• Changing and re-implementing the designed circuit

• Testing the corrected design

5.1 Observing a Problem

Often it is easy to see that there is a problem because the designed circuit does not match the designer’s expectations
in an obvious way. For example, a graphical image of the circuit displayed by the RTL Viewer may indicate that
there are missing logic blocks and/or connections.

Consider an error where line 39 in Figure 2 reads

enable_bcd <= test_active;

Compiling the design and testing the resulting circuit would show that the circuit simply does not work. Examining
the designed circuit with the RTL Viewer gives the image in Figure 21. It is apparent that there is no output from the
block hundredth_sec. The reason is that the Compiler recognized that the signal sec_100th is not used as an input
anywhere in the rest of the circuit, hence it omitted this signal. Making this observation the designer would quickly
discover the error in line 39.

FPGAcademy.org
Mar 2022

19

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

Figure 21. The erroneous circuit displayed by the RTL Viewer.

As another example, suppose that the designer assumes erroneously that the elements of a VHDL vector that refers
to the segments of a 7-segment display are labeled as going from 6 to 0, which would mean that line 7 in Figure 2
would read

HEX3, HEX2, HEX1, HEX0 : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

Compiling the design would result in a circuit that seems to respond properly to pressing of the input keys, but
generates a strange-looking output on the 7-segment displays. Observing this behavior, the designer may suspect
that there is something wrong with the display of BCD digits. A possible test is to see if the BCD counter generates a
plausible result, which is easily accomplished by using the SignalTap Logic Analyzer. Figure 22 shows an image that
we obtained by triggering on the clear signal’s rising edge (going from 0 to 1), which happens in response to KEY2

being pressed causing the timer to stop counting. The logic analyzer display indicates that the BCD value should
be 0021. However, the 7-segment displays depict the two least-significant digits as 51 and the two most-significant
digits as upside-down letters AA. The latter fact provides an immediate clue because the difference between the
inverted A and the expected 0 is in segments labeled 0 and 6 in Figure 12, which are reversed. This should lead to a
quick detection of the error that we created.

Note also that Figure 22 indicates that the control signals appear to work correctly. One clock cycle after the active
edge of the clear signal, the start_test and test_active signals go to 0. The sec_100th and enable_bcd signals are
both equal to 0, because they are equal to 1 only during one clock cycle in a 1/100 second period.

20 FPGAcademy.org
Mar 2022

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

Figure 22. Using the SignalTap Logic Analyzer to observe the output of the BCD counter.

A complex circuit may be difficult to debug. The circuit implementation may appear to contain all necessary com-
ponents, it may appear to function properly, but the results it produces do not exhibit the expected behavior. In such
cases, the first task is to identify the source of the problem.

5.2 Identifying the Problem

Designer’s intuition (which improves greatly with experience) may suggest some tests that could be tried. Otherwise,
it is necessary to adopt an organized procedure. A golden rule is to first test small portions of the circuit, which should
be easy to do if the circuit is designed in modular fashion. This is referred to as the divide-and-conquer approach.

Our example circuit is constructed in modular fashion. Each module in Figure 1 can be tested separately by using
the SignalTap Logic Analyzer. It is also useful to compile, simulate and test each module on its own, before it is
included in the bigger circuit.

It may be helpful to functionally exercise only a portion of a designed circuit, which can show whether or not this
portion is working correctly. For example, we can test the BCD counter and the 7-segment displays by isolating this
part from the rest of the circuit and providing separately-controlled inputs to this subcircuit. One way of doing this
is to use a manual clock instead of the system clock, which would allow us to see the changes (on the 7-segment
displays) that take place during the counting process. To accomplish this, we can change line 45 in Figure 2 to read

bcdcount: BCD_counter PORT MAP(KEY(2), request_test, ’1’, BCD3, BCD2, BCD1, BCD0);

Now, KEY2 is used as a manual clock and the counter is enabled at all times (by connecting 1 to the enable input).
Once these changes have been implemented, pressing KEY2 repeatedly will step the counter in the upward direction
which should be observable on the displays. Note that the BCD counter can be cleared by pressing KEY1, but

FPGAcademy.org
Mar 2022

21

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

only when an active clock signal edge arrives (as a result of pressing KEY2) because the BCD_counter module uses
synchronous clear.

6 Sources of Errors in VHDL Designs

The Quartus Prime Compiler can detect many errors in VHDL files that specify a given circuit. Typical errors
include incorrect syntax, undeclared inputs or outputs, improper use of variables and incorrect sizes of vectors. The
compiler stops compilation and displays an error message. Such errors are usually easy to find and correct. It is
much more difficult to find errors in a circuit that appears to be correctly specified but the specification does not
result in a circuit that the designer hoped to achieve. In this section we will consider some typical errors of this type.

Some common errors in VHDL designs are:

• Inadvertent creation of latches

• Omission of signals

• Not assigning a value to a wire

• Assigning a value to a wire more than once

• Incorrect specification of PORT MAP signals

• Wrong definition of a signal vector

• Incorrectly specified FSM (e.g. wrong or invalid next state)

• Incorrect timing where the output signal of a given circuit is off by one clock cycle

• Careless use of clocks

Inadvertent latches are created by the Compiler if the designer fails to specify the action needed for all cases in
constructs where a certain number of cases are expected to be specified in what is supposed to be a combinational
circuit (e.g. in IF-ELSE and CASE statements).

If the designer fails to use some signals in a VHDL design file, the Compiler will ignore these signals completely
and may even omit the circuitry associated with these signals.

Failure to include the BEGIN and END delimiters in a multi-statement PROCESS block will cause only one state-
ment to be considered valid.

Careful use of blocking and nonblocking assignments is essential. It is dangerous, and not advisable, to use both
types of assignments in the same PROCESS block. To describe a combinational circuit in a PROCESS construct, it
is best to use blocking assignments. For sequential circuits, one should use nonblocking assignments.

Incorrect definitions of signal vectors lead to problems, as illustrated in section 5.1.

22 FPGAcademy.org
Mar 2022

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

Errors in the specification of an FSM may lead to a variety of undesirable consequences. They can cause wrong
functional behavior by reaching wrong states, as well as wrong timing behavior by producing incorrect output
signals. A common error results in an output signal that is off by one clock cycle.

It is particularly important to use clocks carefully. For example, a slower clock may be derived by using a counter
to divide down the main system clock. Timing problems may arise when signals generated in a circuit controlled by
one clock are used as inputs to a circuit controlled by a different clock. Whenever possible, all flip-flops should be
driven by the same clock. For instance, if a given counter has to be incremented/decremented at a rate that is slower
than the system clock rate, it is best to drive the counter with the system clock and use a slower changing enable
signal to make the counter count at a slower rate. We used this approach in our example circuit to control the BCD
counter.

7 Errors Due to Wrong Interpretation of Board Characteristics

Inadequate understanding of the DE-series board can lead to design errors. Typical examples include:

• Wrong pin assignment

• Wrong interpretation of the polarity of pushbutton keys and toggle switches

• Timing issues when accessing various chips on the board, such as the SDRAM memory

If pins are not assigned correctly, the circuit will not exhibit the desired behavior. This may be easy to detect when
obviously observable input and output signals are involved. If the designer specifies a wrong assignment for a
pushbutton key, then pressing this key will probably have no effect. If the connection to a 7-segment display is not
made at all, the display will show the pattern 8. This means that all seven segments are driven by a logic 0 signal,
because a segment lights up when connected to ground voltage. The Quartus Prime Compiler causes all unused pins
to be driven to ground by default. (Of course, this default choice can be changed (in the Quartus Prime project) by
specifying a different option for the unused pins.) The easiest way of ensuring that the pins are correctly assigned
for the DE-series board is to import the pin-assignment file for your DE-series board from the FPGA University
Program’s website.

Pushbutton switches produce logic 0 when pressed. Toggle switches generate logic 1 when in the up position
(towards the middle of the board).

If the design involves access to the SDRAM chip, it is necessary to adhere to strict timing requirements, as explained
in the tutorial Using the SDRAM Memory on Intel’s DE-Series Board with VHDL Designs.

8 Design Procedure

It is prudent to follow a design procedure that tends to minimize the number of design errors and simplifies the
debugging task. Here are some suggestions that are likely to help:

• Design the circuit in a modular, hierarchical manner.

FPGAcademy.org
Mar 2022

23

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

• Use well-understood and commonly-used constructs to define circuits.

• Test each module, by simulating it, before it is incorporated into the larger circuit.

• Define and test portions of the final circuit by connecting two or more modules.

• Construct the complete circuit and test it through simulation. Both functional and timing simulation should be
done.

• Download the compiled circuit into the FPGA on the DE-series board and test it.

It is prudent to write VHDL code in a style that allows one to easily visualize the circuit specified by the code. It is
also useful to make the code easily understandable for other people.

24 FPGAcademy.org
Mar 2022

https://www.fpgacademy.org

DEBUGGING OF VHDL HARDWARE DESIGNS ON INTEL’S DE-SERIES BOARDS For Quartus® Prime 21.1

Copyright © FPGAcademy.org. All rights reserved. FPGAcademy and the FPGAcademy logo are trademarks of
FPGAcademy.org. This document is being provided on an “as-is” basis and as an accommodation and therefore
all warranties, representations or guarantees of any kind (whether express, implied or statutory) including, with-
out limitation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically
disclaimed.

**Other names and brands may be claimed as the property of others.

FPGAcademy.org
Mar 2022

25

https://www.fpgacademy.org

	1 Introduction
	2 Background
	3 Example Circuit
	4 Quartus® Prime Tools for Use in Debugging of Hardware Designs
	4.1 Netlist Viewers
	4.1.1 RTL Viewer
	4.1.2 Technology Map Viewer
	4.1.3 State Machine Viewer

	4.2 SignalTap Logic Analyzer
	4.3 Simulators

	5 Debugging Concepts
	5.1 Observing a Problem
	5.2 Identifying the Problem

	6 Sources of Errors in VHDL Designs
	7 Errors Due to Wrong Interpretation of Board Characteristics
	8 Design Procedure

