
ECED 4260: IC Design and Fabrication

The S-Machine Instruction Set Architecture
Larry Hughes, PhD
Electrical and Computer Engineering
Dalhousie University

19 October 2023
Revised: 20 Oct 23 and 23 Oct 23

Introduction

This document describes the Instruction Set Architecture (ISA) of a simple Central Processing Unit (CPU),
the S-Machine.

The S-Machine has a limited instruction of 15 instructions (see Table 3). It is a load-store machine,
requiring registers to be loaded with data before an operation can take place.

Each instruction is 16-bits wide with a 4-bit opcode. The machine’s memory is limited to 256 words,
where a word is 16-bits. Data memory size can be doubled to a staggering 512 words by modifying the
load and store instructions. Code memory size is limited to 256 words.

The machine is a RISC architecture and allows either a Harvard or Princeton memory organization.

Addressing is absolute and cannot be easily modified during a program’s execution. Branching, both
unconditional and conditional uses 8-bit absolute addressing.

CPU registers and status bits

The machine has two data registers, a program counter, and three status bits.

The data registers

The S-Machine has two data registers, register A (RA) and register B (RB).

Data register A (RA) is used in all arithmetic operations. The result of an operation is stored in register A.

Register B is a temporary register

All operations are defined as:

RA RA <operand> RB

Where <operand> is one of six operations (add, subtract, or, and, and exclusive-or).

The program counter

The program counter (PC) is an 8-bit register. It contains the address of the next instruction to be
executed. The default boot address is 0x00.

The PC is not directly accessible by the programmer (like RA and RB are). It is incremented by 1 after
each instruction is fetched.

The flow-of-control can be changed using the branch instruction.

If the PC reaches the end of program memory (address 0x00FF), it wraps to address 0x0000).

ECED 4260: S-Machine ISA 2

The status bits

The S-Machine has three status bits:

Z: The value in RA is zero after an operation has occurred.

N: The value in RA is negative (i.e., RA bit <15> is set) after an operation has occurred.

C: A carry has occurred after an operation has occurred. The truth table to detect carry is shown in Table
1.

Table 1: Carry bit combinations after arithmetic operation

RA <15>
(Before)

RB <15> RA <15>
(Result)

Carry

0 0 0 0

0 0 1 0

0 1 1 0

0 1 0 1

1 0 1 0

1 0 0 1

1 1 0 1

1 1 1 1

Any or all these bits can be set or cleared using the SET and CLR instructions.

The compare instruction, CMP, also sets or clears bits N and Z.

Instruction cycle

The S-machine has a three stage or phase instruction cycle: Fetch, Decode, and Execute. These phases
are executed in this order continuously.

Fetch

The fetch phase fetches the next instruction to be executed, specified by the PC. After the instruction is
fetched, the PC is incremented by 1.

Decode

In this phase, the CPU decodes the instruction into is opcode (bits <15:12>) and, depending on the
instruction, into its operands. This information is used to setup the execute phase.

Execute

The action associated with the execution cycle depends on the instruction, as shown in Table 2.

ECED 4260: S-Machine ISA 3

Table 2: Execution phases

Instruction bits
<15:14>

Description

00 Instructions that have operands and 8-bit addresses or data values.

01 Arithmetic and logic instructions without operands.

10

11 CPU status bit setting and clearing instructions. (CMP is a member of
this group, it should be with arithmetic and logic instructions.

Instructions

The S-machine has 15 instructions, they are described here.

LD: Load

Load either register A or B with either a 16-bit value from memory or an 8-bit immediate value from the
instruction. The 8-bit immediate value can be copied into the target register’s high or low byte.

The format of the instruction is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 R L B 0 D D D D D D D D

R: Register, either RA (0) or RB (1).

L: Location of data, either a direct value in memory (0) or an immediate value in the instruction (1).

B: Byte, if the data is an immediate value (L = 1), the byte (bits <7:0>) is stored in either the low byte (0)
or the high byte (1).

D: Bits <7:0>, either the address of data to be read or immediate value to load.

ST: Store

The store instruction stores the 16-bit value from register A or B in the memory location specified in bits
<7:0>.

The format is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 R 0 0 0 A A A A A A A A

Where R indicates a register, either A (0) or B (1) and A (bits <7:0>) specify the location in memory to
where the register value is to be written.

INC: Increment

The increment instruction increments one of the registers (A or B) by a one-byte value.

The format of the instruction is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 R 0 0 0 V V V V V V V V

ECED 4260: S-Machine ISA 4

Where R is the register, either A (0) or B (1). The value, V, to be added to the register is stored in bits
<7:0>.

The Z, N, and C bits should be set or cleared after INC has executed.

BR: Branch (Conditional and unconditional)

Branch or change the flow of control to the specified address, either conditionally or unconditionally.
The instruction is microcoded to support: branch always (BR), branch if zero (BZ), branch if negative (BN),
or branch if carry (BC), branch if not zero (BNZ), branch if not negative (BNN), or branch if not carry
(BNC).

The format of the instruction is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 X Z N C A A A A A A A A

Where X denotes whether the branch is uncomplemented (i.e., BZ, BN, or BC) or uncomplemented (BNZ,
BNN, or BNC). If all four bits are set or clear, the branch always occurs (BR). The Z bit is checked if bit<10>
is set, the N bit is checked if bit<9> is set, and the C bit is checked if bit<8> is set.

The pseudocode for the instruction is:

Execute 0

IF Instruction . bit<11> = 0 THEN

 * BZ, BN, BC plus others

IF Instruction . bit<10> = Z.bit OR

 Instruction . bit<9> = N.bit OR

 Instruction . bit<8> = C.bit THEN Execute 1

ELSE

* 0 0 0 0

IF Instruction . bit<10> = 0 AND

 Instruction . bit<9> = 0 AND

 Instruction . bit<8> = 0 THEN Execute 1

ENDIF

ELSE

 * BNZ, BNN, BNC

IF (Instruction . bit<10> = 1 AND Z.bit = 0) OR

 (Instruction . bit<9> = 1 AND N.bit = 0) OR

 (Instruction . bit<8> = 1 AND C.bit = 0) THEN Execute 1

ENDIF

* 1 1 1 1

IF Instruction . bit<10> = 1 AND

 Instruction . bit<9> = 1 AND

 Instruction . bit<8> = 1 THEN Execute 1

ENDIF

ENDIF

IF Execute = 1 THEN

 PC Instruction . bit<7:0>

ENDIF

The status bits remain unchanged after BR is executed.

ECED 4260: S-Machine ISA 5

ADD: Add

The Add instruction adds RB to RA with the result being stored in RA.

There are no operands associated with the instruction. The format of the instruction is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The Z, N, and C bits should be set or cleared after ADDA has executed.

SUB: Subtract

The Sub instruction subtracts RB from RA with the result being stored in RA.

There are no operands associated with the instruction. The format of the instruction is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

The Z, N, and C bits should be set or cleared after SUBA has executed.

OR

The OR instruction or’s the contents of RB with RA with the result being stored in RA.

There are no operands associated with the instruction. The format of the instruction is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

The Z and N bits should be set or cleared after OR has executed. The C bit should be cleared.

AND

The AND instruction and’s the contents of RB with RA with the result being stored in RA.

There are no operands associated with the instruction. The format of the instruction is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

The Z and N bits should be set or cleared after AND has executed. The C bit should be cleared.

XOR: Exclusive OR

The XOR instruction exclusive or’s the contents of RB with RA with the result being stored in RA.

There are no operands associated with the instruction. The format of the instruction is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The Z and N bits should be set or cleared after XOR has executed. The C bit should be cleared.

ECED 4260: S-Machine ISA 6

SHR: Shift right

This instruction shifts the bits in RA one-bit to the right. The C bit receives the value of bit<0>. Bit<15> is
assigned zero. The pseudocode is as follows:

C bit Bit<0>

Bit<0> Bit <1>

…

Bit<14> Bit<15>

Bit<15> 0

The format of the instruction is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

TO shift right, add RA to RA.

MOV: Move RA to RB

The contents of RA is moved to RB. The format of the instruction is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

The status bits are not changed.

EXCH: Exchange RA and RB

The contents of the RA and RB registers are exchanged (swapped). The pseudocode is as follows (the
Temp register is internal and cannot be accessed by the programmer.

Temp RA

RA RB

RB Temp

The instruction format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

The status bits are not changed.

CMP: Compare

The compare instruction compares RA and RB by subtracting RB from RA. The result of the operation is
discarded.

The instruction format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Status bits Z, N, and C can be set or cleared in this operation.

ECED 4260: S-Machine ISA 7

SET: Set one or more status bits

One or more of the status bits (bits Z, N, and C) are set. The pseudocode is:

IF Instruction . bit<10> = 1 THEN Z 1

IF Instruction . bit<9> = 1 THEN N 1

IF Instruction . bit<8> = 1 THEN C 1

The instruction format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 Z N C 0 0 0 0 0 0 0 0

CLR: Clear one or more status bits

One or more of the status bits (bits Z, N, and C) are set. The pseudocode is:

IF Instruction . bit<10> = 1 THEN Z 0

IF Instruction . bit<9> = 1 THEN N 0

IF Instruction . bit<8> = 1 THEN C 0

The instruction format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 Z N C 0 0 0 0 0 0 0 0

ECED 4260: S-Machine ISA 8

Table 3: S-Machine ISA

Opcode Operands Operation 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LD A|B; D|I; H|L;
Address | Value

Load A|B
Direct | Immediate value
Immediate: High | Low byte

0 0 0 0 R A B 0 D D D D D D D D

ST A|B; Address Store A | B 0 0 0 1 R 0 0 0 A A A A A A A A

INC A|B; Value Increment A |B by immediate value 0 0 1 0 R 0 0 0 V V V V V V V V

BR X, Z, N, C;
Address

PC <- Address conditional on XZNC
X=0: Check Z, N, C
X=1: Check NZ, NN, NC
X=Z=N=C=0|1: Unconditional branch

0 0 1 1 X Z N C A A A A A A A A

ADD No operand RA <- RA + RB 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SUB No operand RA <- RA - RB 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

OR No operand RA <- RA OR RB 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

AND No operand RA <- RA AND RB 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

XOR No operand RA <- RA XOR RB 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SHR No operand RA <- RA >> 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

MOV No operand RB <- RA 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

EXCH No operand RB <-> RA 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

CMP No operand Z, N, C <- RA - RB 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SET Z, N, C Set one or more of Z, N, C
Z=1: Z bit <- 1
N=1: N bit <- 1
C=1: C bit <- 1

1 1 0 1 0 Z N C 0 0 0 0 0 0 0 0

CLR Z, N, C Clear one or more of Z, N, C
Z=0: Z bit <- 0
N=1: N bit <- 0
C=1: C bit <- 0

1 1 1 0 0 Z N C 0 0 0 0 0 0 0 0

ECED 4260: S-Machine ISA 9

Errata

20 Oct 23: CMP instruction included status bits. It should not have the status bits.

22 Oct 23: Addition bit combinations added to Table 1.

22 Oct 23: Missing ENDIF in branching pseudocode.

