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2.1 Introduction to VHDL

• Conventional Hardware Specification

• Truth tables

• Boolean equations

• State diagrams

• Pseudo-code behavioral algorithms

• Schematic diagrams

• Netlist, proprietary cad formats

• Advantages

• Similar to methods in other engineering 
areas

• Familiar, graphical

• Disadvantages

• Too many different method

• Specification languages typically are not 
defined in syntax or semantics

• Specifications are not typically 
manipulatable
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2.1 Introduction to VHDL 

(cont’d)

• Motivation of HDLs

• Obtain benefits of an unambiguous, 

standard specification language

• Facilitate use of computer-aided design 

(CAD) and computer-aided engineering 

tools

• Facilitate exploration of rapidly 

improving logic synthesis technology

• Increase designer efficiency, permit rapid 

prototyping, reduce time-to market, etc.

• Some Common HDLs

• ABEL

• Verilog-HDL(cadence, IEEE 1364)

• VHDL (US DoD, now IEEE 1164 and 

1076
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2.1 Introduction to VHDL 

cont’d: Synthesis Technology

• logic minimization 
software

• PLA synthesis 
software

• Multiple-level 
combination logic 
synthesis

• Sequential logic 
synthesis

• Automatic mapping 
to gate arrays, 
standard cells, 
(PLDs), FPGAs

• VHDL and logic 

synthesis

• VHDL provided a 

key platform for 

commercializing 

logic synthesis 

technology

• IEEE standard 

1076.3 defines a 

subset of VHDL 

for use by logic 

synthesis tools

Evolution of synthesis technology
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2.1.1History of VHDL

• Very high speed Integrated Circuit 

Program

• The US department of Defense funded the 

VHSIC program in the 1970’s and 1980’s 

to promote the improvement of 

semiconductor technology

• One product of the VHSIC program was 

VHDL

• Originals of VHDL

• To improve documentation of complex 

hardware designs and thus improve the 

ability to subcontract the design of 

military systems

• To provide a standard modeling and 

simulation language

• Initial Standards: IEEE 1076 (1987)
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2.1.2 Fundamental Concept:

A Simple Design

1 - - eqcomp4 is a four bit equality comparator

2 entity eqcomp4 is

3  port ( a, b: in bit_vector(3 downto 0);

4         equals: out bit);  -- equals is output

5  end entity eqcomp4;

6

7 architecture dataflow of eqcomp4 is

8   begin

9 equals <= ‘1’ when (a=b) else ‘0’;

10  end architecture dataflow;

11 - - end of the program

a             b
Comparator equals

4 4

1
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2.1.2 Example 2.1 
Design an entity of a three  input AND gate

1 - - three input and gate

2 entity and3 is

3  port ( a, b, c : in bit;

4         d: out bit);  -- d is output

5  end entity and3;

6

7 architecture structure1 of and3 is

8   begin

9 d <= a and b and c;

10  end architecture structure1;

11 - - end of the program

a
and3 db

c
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2.1.2 Example 2.2 : An N-bit 

Counter

Entity Counter is

Generic (N: Natural);

Port(Clk: in bit;

reset: in bit;

R: out natural range 0 to N-1);

End Entity counter;

Clk
Counter

R

Reset
1 1
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2.1.2 Example 2.2 : An N-bit 

Counter (cont’d)

Architecture sync of counter is

Signal C: Natural range 0 to N-1;

Begin

R<= C;

P_count : process (Clk) is

begin

If Clk =‘1’ and Clk’event then

If reset =‘1’ or C=‘N-1’ then
C<=0; -- clear counter

Else
C<=C+1;

End if;

End if;

End process P_count;

End architecture Sync;

Counter with Synch. reset
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2.1.2 Example 2.2 : An N-bit 

Counter (cont’d)
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2.1.3 Lexical Elements

• Comments  -- comments are important

• Identifiers are a sequence of non-space 

characters that obey the following 

rules

• Every character is either a letter, a digit, 

or the underscore (_)

• The first character in the sequence is a 

letter

• The sequence contains no adjacent 

underscores, and the last character is not 

an underscore

Remarks: VHDL identifiers are case-

insensitive

Some examples:

Last@value    5bit_counter   _AO

Clock__pulse    good_one

Extended identifiers: \999\
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2.1.3 Lexical Elements (cont’d)

• Reserved words: words or keywords 

are reserved for special use in VHDL. 

They can’t be used as identifiers
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2.1.3 Lexical Elements (cont’d)

• Special symbols

• $ ‘ ( ) * +, - . / : ; < => |

• => ** := /+ >= <= <>

• Numbers: integer literal and real literal

• Example 10  0 102  4.13

• Exponential notation 46E3 1E+12 5e0 

3.0e-3 

• Base other than 10 

• Base of 2        2#10000000#

• Base of  8       8#0.4#, what is this in decimal?

• Underline as separators:

• 123_456 3.141_592_6   2#1111_1100_0000# 

• Characters

• ‘A’  --uppercase letter

• ‘z’    -- lower case letter

• ‘,’     -- coma

• ‘ ‘     --the separator character space
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2.1.3 Lexical Elements 

(cont’d)

• Strings: a sequence of characters 

• “a string”

• “we can include and printing characters”

• “”

• “string in string ““a string ””. ”

• “if we can’t write  a string in one line”

• &” then we break it into two lines”

• bit Strings

• B (base of 2)   B “0101 0011” 

• b“1111_0010”  

• O (base of 8) O“372” 

• X (base of 16) X“FA”  what is this ?

• X “10” what is this one ?
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2.1.4 Syntax Description

• Combine lexical elements to form valid VHDL 

description

• Syntactic  category 

• Rules of syntax EBNF (Extended Backus-Naur 

Form)

•Example of a variable assignment:

•Variable_assignment <= target:=expression;

•D0 := 25+6;

• Optional component [  ]

•Function_call <= name[(association_list)]

• Combine alternatives |

•Mode <= in|out|inout

•Example for process statement

Process_statement <=

Process is

{process_item}

Begin

{sequential_statement}

End Process;-- will be talked about later on
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2.2 Scalar Data Types and 

Operations

2.2.1 Constants, variables, signals

Constant_declarations <=
Constant identifier {,…} : subtype_indication [:= expression];

-- constant have a value that is defined once during 
initialization, and then remains unchanged.

-- constants in subprograms are recomputed each time the 
subprogram is called 

Examples:

Constant number _of_bytes : integer :=4;

Constant e : real := 2.718;

Constant prop_delay : time := 3 ns;

Variable_declarations <=
variable identifier {,…} : subtype_indication [:= expression];

-- have a value that is updated 
immediately as a result of an assignment 
statement.

Examples:

Variable index : integer := 0;

Variable start,finish : time := 0  ns;
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2.2.1 Constants, Variables, 

Signals

Signals:

• used to model hardware signal 

conductors

• information is communicated between 

design components only via signals.

• signals can have fixed links to other 

signals.

• signals have a present value, as well as 

a sequence of past and projected future 

values (variables only have a present 

value).

• signal values are scheduled to be 

changed by means of assignment 

statements:

• A<= new_constant_value;
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2.2.1 Variable Versus signals?

Variable and signals are easily confused at first.

• Both signals and variables can be assigned 
values (also, a signal can be assigned the 
value of a variable, and vice versa)

Differences between the variables & signals

• Signal correspond to physical signals 
associated with conductors or busses.

• Variables are a convenience for more easily 
describing algorithms that might be used in 
process and subprograms. There is not 
necessarily any hardware associated with a 
variable.

• A variable’s value can be changed 
immediately as a result of an assignment 
statement ( which must use the := symbol).

• A signal’s value can be changed no sooner 
than the beginning of the next simulation 
cycle. The <= symbol  must be used.
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2.2.2 Scalar types

Type declarations
Type_declaration <= type identifiers is type_definition;

Example:

Type apples is range 0 to 100;

Example 2.2 :

Package int_types is

type small_int is range 0 to 255;

End package int_types;

Use work.int_types.all;

Entity small_adder is

port(a,b: in small_int; s: out small_int);

End entity small_adder;
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2.2.2 Scalar types (cont’d)

Integer Types
Integer _Type_declaration <= 

type identifiers is range expression (to | downto)

expression;

Example:

Type day_of_month is range 0 to 31;

Declare variable of this type:

Variable today: day_of_month := 9;

Floating Types …

Arithmetic operations:

• + - * /

• Mod rem abs **
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2.2.2 Scalar types (cont’d)

Physical Types
Physical_type_definition <= 

type identifiers is range expression (to | downto)

expression

Units

Identifier;

{identifier=physical_literal;}

End units [identifier]

Example:

Type resistance is range 0 to 1E9

Units

Ohm;

kohm = 1000 ohm;

Mohm = 1000 kohm;

End units resistance;

Declare variable of this type:

Variable R1: resistance := 900 ohm;
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2.2.2 Scalar types (cont’d)

Enumeration Types:
Type water level is (too_low, low,  high);

Characters …

Boolean types
Type boolean is (false, true);

Bits
Type bit is (‘0’,’1’);

Standard Logic
Type std_ulogic is (‘U’,  --uninitilized

‘X’, --forcing unkown                                                                         

‘0’, --zero                                                                         

‘1’, --one

‘Z’, --high impedance

‘W’, -- weak unkown

‘L’, -- weak zero

‘H’, -- weak one

‘-’); --don’t care 

Sub types                         
Subtype small_int is integer range –128 to 127
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2.2.2 Scalar types (cont’d)

Type qualification

Type Logic_level is (unkown, low, 
undriven, high);

Type system_state is (unkown, ready, 
busy);

To distinguish between common unknown: 
Use logic_level’(unkown) and

system_state’(unkown) 

Type conversion: 

real(123)        integer(12.4)

Attributes of Scalar types:

• T’left – first(leftmost) value in T

• T’right  last(rightmost) value in T

• T’low

• T’high

• T’ascending True if T is an ascending

• T’image(x)

• T’value(s)
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2.2.2 Scalar Types (cont’d)

• VHDL is a strongly typed language

• every object has a unique type.

• objects of different types cannot be 

mixed together in expressions.

• object typing can be determined 

statically

• the type of every object must be clear 

from the VHDL program before any 

simulation has taken place.

• the types of object must be declared 

explicitly in all program scopes.
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2.3 Sequential Statement

2.3.1 if statement

2.3.2 case statement

2.3.3 Null statement

2.3.4 loop statement

2.3.5 assertion and report statements
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2.3.1 If Statement

Syntax rule

If_statement <=
[if_label:]

If boolean_expression then

{sequential_statement}

{elsif boolean_expression then

{sequential_statement}}

[else

{sequential_statement}]

End if [if_label];

Example for If_statement <=
If (count =“00”) then

a<=b;

Elsif (count =“10”) then

a<=c;

Else

a<=d;

End if ;

a
b
c
d

count

1
11

1

2
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2.3.2 Case Statement

Syntax rule
case_statement <=

[case_label:]

case expression is

(when choices => {sequential_statement}) 

{…}

End case [case_label];

Example for case_statement <=

case count is

When “00” =>

a<=b ;

When “10” =>

a<=c ;

When others =>

a<=d ;

End case ;

a
b
c
d

count

1
11

1

2
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2.3.3 Null Statement

Null_statement <= [label:] null;

Example 

case count is

When “00” =>

a<=b ;

When “10” =>

a<=c ;

When “01” =>

a<=d ;

When “11” =>

null ;

End case ;

a
b
c
d

count

1
11

1

2
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2.3.4 Loop Statement

Infinite loop:

Loop_statement <=

[loop_label:]

loop

{sequential_statement}

End loop [loop_label] ;

Example:  Loop

wait until clk =‘1’;

count <= count_value;

end loop;

While loop:

Loop_statement <=

[loop_label:]

while condition loop

{sequential_statement}

End loop [loop_label] ;
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2.3.4 Loop Statement (cont’d)

Example for While loop:

n := 1;

Sum := 0; 

while n <100 loop

n := n+1;

Sum := sum +n;

End loop ;

For loop:

Loop_statement <=

[loop_label:]

For identifiers in discrete range loop

{sequential_statement}

End loop [loop_label] ;

Example for the for loop

For n in 1 to 100 loop

Sum := sum +n;

End loop ;
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2.3.4 Loop Statement (cont’d)

Exit statement <=

[label:] exit [loop_label] [when 

boolean_expression];

Loop

wait until clk =‘1’ or reset =‘1’;

Exit when reset = ‘1’;

count <= count_value;

end loop;

NEXT statement

Loop

statement 1;

Next when condition

Statement 2;

End loop;

Loop

statement 1;

If not condition then 

Statement 2;

End if;

End loop;
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2.3.5 Assertion and Report 

Statement

Assertion_statement <=

[label:] assert boolean_expression [report

expression] [severity expression];

assert initial_value <= max_value

report “ initial value too large”
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2.4 Composite Data Types 

and Operations

Array types
Type BIT is range 0 to 1;

Type word is array (31 downto 0) of bit;

Example:

Signal MEM_BUS: WORD;-- will be defined later

MEM_BUS(0) <= 0 ;

MEM_BUS(1) <=0 ;

MEM_BUS(2) <=1 ;

Records

Type time_stamp is record

seconds: integer range 0 to 59;

minutes: integer range 0 to 59;

hours : integer range 0 to 23;

End record time_stamp;

Variable sample_time, current_time: time_stamp;

Current_time.seconds := 30;

Current_time.hours := 13;
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2.5 Modeling Constructs

• VHDL inherited many modularity ideas form 
the DoD software language ADA

• Hardware specifications are composed of 
five kinds of design units:
Entities

Architectures

Configurations

Packages

Package bodies

• Design units are provided to the VHDL 
simulation and/or synthesis environment in 
source files;

• Design units can also be included from 
libraries of pre-designed data types, signal 
types, signal type conversions, components 
etc.
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2.5.1 Modeling Constructs: 

entity

Entity block is

Port (a, b: in bit;

c: buffer bit;

d: inout bit;

e: out bit);     

End entity block;    

buffer can be used for all output signals 

a

b
c

d

e

in

in

buffer

inout

out
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2.5.2 Modeling Constructs: 

Architecture Bodies

Architecture_body <=

Architecture identifier of entity_name is

{block_declaration}

Begin

{ concurrent_statement}

End [architecture ][identifier];

Example:

Entity adder is

Port (a: in word;

b: in word;

sum: out word);

End entity adder;

Architecture ad1 of adder is

Begin

Add_a_b: process(a,b) is

Begin

sum <= a+b;

End process add_a_b;

End architecture ad1;

Signal declarations
Signal_declaration <=

Signal identifier {…} : subtype_indication [:= 

expression]
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2.5.3 Two Main Levels of 

VHDL Specification

1) Behavior level:

• What is the system supposed to do?

• Components described using algorithms 
that do not necessarily reflect the actual 
hardware structure of likely 
implementations.

• Signal don’t necessary need to be binary 
values. Data types can be chosen to 
facilitate high-level description

2) Structure level:

• What is the structure of an 
implementation?

• Design specified using realizable 
components

• Binary representation of data types and 
signals are used.
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Example  2-to 4 Decoder

VHDL entity for the decoder

Entity decoder is

port ( sel : in bit_vector (1 downto 0);

dout : out bit_vector (3 downto 0));

constant delay : time := 5 ns;

end entity decoder; 

sel(0)

sel(1)

dout(0)
dout(1)
dout(2)
dout(3)
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Behavior-level architecture in 

VHDL

Behavior-level architecture in VHDL

Architecture behavior1 of decoder is

begin

with sel  select

dout <=

“0001” after delay when “00”,

“0010” after delay when “01”,

“0100” after delay when “10”,

“1000” after delay when “11”,

end behavior1 ;

sel(0)

sel(1)

dout(0)
dout(1)
dout(2)
dout(3)
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Structure-level architecture 

Architecture structure1 of decoder is

component and2 –pre-defined part type

Port ( I1, I2 : in bit; O1 out bit);

End component;

component inverter –pre-defined part type

Port ( I1 : in bit; O1 out bit);

End component;

Signal sel_bar: bit_vector (1 downto 0);

Begin

inv_0: inverter port map (I1=>sel(0), 
O1=>sel_bar(0));

inv_1: inverter port map (I1=>sel(1), 
O1=>sel_bar(1));

and_0:and2 

port map (I1=>sel_bar(0), I2=>sel_bar(1), 
O1=>dout(0));

and_1:and2 

port map (I1=>sel(0), I2=>sel_bar(1), O1=>dout(1));

and_2:and2 

port map (I1=>sel_bar(0), I2=>sel(1), O1=>dout(2));

and_3:and2 

port map (I1=>sel(0), I2=>sel(1), O1=>dout(3));

End structure1 ;
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Structure-level schematic
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2.5.4 Modeling Constructs

Signal assignment

Signal_assignment_statement <=

[label: ] name <= [delay] waveform;

Waveform <= (value_expression [ after

time_expression]) {…}

y <= a or b after 5 ns;

Wait statement <=

[label: ] wait [ on signal name {…}]

[until boolean_expression] 

[for time_expression];
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2.5.4 Modeling Constructs 

(cont’d): signal attributes
S’delayed(T)

• if T>0, then a signal is returned that is 
identical to S delayed by time T. If T=0 ( or 
is absent), then S is returned delayed by time 
delta.

S’stable(T)

• if T>0, then a signal is returned that has 
value TRUE if S has not changed for the past 
time T; at other times the signal has value 
FALSE. If T=0 (or is absent), then the signal 
will be FALSE during a simulation cycle 
when S changes values; otherwise the signal 
is TRUE.

S’quiet(T)

• if T>0, then a signal is returned that has 
value TRUE if S has not been updated for the 
past time T; at other times the signal has 
value FALSE. If T=0 (or is absent), then the 
signal will be FALSE during a simulation 
cycle when S is updated; otherwise the signal 
is TRUE.
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2.5.4 Modeling Constructs 

(cont’d): signal attributes

S’active(T)

• Boolean that is true if signal S has been 

updated during the current simulation cycle

S’event

• Boolean that is true if signal S has changed 

value during the current simulation cycle

S’LAST_EVENT

• The amount of time elapsed since signal S 

last changed value.

S’LAST_ACTIVE

• The amount of time elapsed since signal S 

was last updated.

S’LAST_VALUE

• The value of signal S before the last time that 

signal S changed values.
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2.5.4 Modeling Constructs (cont’d)

Delay_mechanism<=

transport | [reject time_expression] 

inertial 

Example for transport:

Line_out <= transport line_in after 3 ns;

Remarks: the output is shift by the time delay

Example for inertial delay:

Line_out <= inertial not line_in after 3 ns;

• Remarks: if a signal would produce an output 

pulse shorter than the propagation delay, the the 

output pulse does not happen

Line_in

Line_out

Line_in

Line_out
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2.5.4 Modeling Constructs 

(cont’d)

Example for both inertial and reject
Line_out <= reject 2 ns inertial not line_in after 3 ns;

Remarks: if a signal would produce an output pulse 

shorter than the reject limit delay, the the output 

pulse does not happen

Process statements <=

[process_label:]

Process [(signal_name{…})] [is]

{ process_item}

Begin

{sequential_statement}

End process [process_label]
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2.5.5 Modeling Concurrency

• In real digital hardware, components all 

operate at the same time and signals are 

updated in parallel.

• How to model concurrency/parallel in VHDL

• Components models are decomposed into 

processes that execute in parallel

• Different signals have values that change in 

parallel over time

• VHDL provides the ability to specify times 

in the future when signals will be updated.

• VHDL provides the ability to specify 

synchronization points, when the values of a 

group of signals are examined and/or updated 

for the same time instant.
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2.5.5 Modeling 

Concurrency(cont’d)

VHDL processes can be used for 
concurrent statement

Example :

Proc1: process(A,B) [is]

Begin

C<= A or B after 5 ns;

End process;

Another example:

Proc2: process(A,B)

Begin

C<= A or B;

Wait on A, B;

End process;
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2.5.5 Modeling 

Concurrency(cont’d)

• A VHDL process can be thought of as a sub-
program that is called once at the beginning 
of the simulation

• All VHDL processes execute in parallel

• When the simulation starts, each process 
begins executing statements following the 
begin statement

• Execution is suspended when the next wait 
statement is encountered

• Wait; - suspends process forever

• Wait on signal_list;

• Wait until condition;

• Wait for time_value;

• Once the end process statement is 
encountered, execution returns to the 
statement following the begin statement.
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2.5.5 Modeling 

Concurrency(cont’d): 

Concurrent Statements

Sequence of Boolean equations:

F <= a nor b nor c;

D <= a and b and c;

E  <= a nor b or c;

When-else conditional signal 
assignment:

Architecture example of fsm is

…

With state select

X<= “0000” when s0|s1

“0010” when s2|s3;

Y when s4;

Z when others;

End example;
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2.5.5 Modeling 

Concurrency(cont’d): 

Concurrent Statements

Multiple assignment using Generate:

g1: for j in 0 to 2 generate

a(j) <= b(j) or c(j);

End generate g1;

g2: c(1) <=c(0) and a(1);

For k in 2 to 20 generate

c(k) <= c(k-1) and a(k);

End generate g2;

g3: For l in 0 to 8 generate

Reg1: register9 port map (clk, reset, enable, d_in(l), 

d_out(l));

End generate g3;
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2.5.6 Example : Counter with 

asyn. reset
Entity Counter is

Generic (N: Natural);

Port(Clk: in bit;

reset: in bit;

R: out natural range 0 to N-1);

End counter;

Architecture Async of counter is
Signal C: Natural range 0 to N-1;

Begin

R<= C;

P_count : process (Clk, reset)

begin

If reset =‘1’ then

C <=0; -- clear the counter

elsIf clk =‘1’ and clk`event then
If C = N-1 then

C<=0; -- clear counter

Else
C<=C+1;

End if;

End if;

End process P_count;

End Async;
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2.5.6 Example  counter with 

asynch. Reset (cont’d)

Clk
register

C

Reset

MUX

0

R

A             B
Comparator

N-1

A=B

+1
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2.5.6 Modeling Finite State 

Machine

• VHDL is easy to implement finite 

state machines

• When combined with logic synthesis, 

a hardware designer no longer needs to 

be concerned with the problems of 

state assignments, logic minimization, 

etc.

• Instead the designer can concentrate 

on high level behavior.
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2.5.6 Modeling Finite State 

Machine : Example 

Present Next state Output

State X=0 X=1 X=0 X=1

S0 S1 S1 0 0

S1 S2 S1 0 0

S2 S2 S1 0 1
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Architecture of State Machine
Architecture state_machine of example is 

Type stateType is (s0,s1,s2);

Signal present_state,next_state:stateType;

Begin

Comb logic: process(present_state,x)

Begin

Case present_state is

When s0 => output <=‘0’;

Next_state <=s1;

When s1 => output <=‘0’;

If (x=‘1’) then Next_state <=s1;

Else Next_state <=s2;

End if;

When s2 => 

If (x=‘1’) then Next_state <=s1; Output <=‘1’;

Else Next_state <=s2; output <=‘0’;

End if;

End case;

End process comb_logic;
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2.6 Subprograms & Packages 

& use clause (cont’d)
Procedure encapsulates a collection of 
sequential statements that are executed for 
their effect

Subprogram_body <=
Procedure identifier [(parameter_list)] is

Begin

{sequential_statement}

End [procedure] [identifier];

Function encapsulates a collection of 
statement that compute a result

Subprogram_body <=
[pure | impure]

Function identifier [(parameter_list)] return 
type_mark is

{subprogram_declarative_item}

Begin

{sequential_statement}

End [function] [identifier];

Return_statement <= [label:] return 
expression;
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2.6 Subprograms & Packages 

& use clause (cont’d)

• Package  provide an important 

way of organizing the data and 

subprogram declared in a model

• Package_declaration <=

• package identifier is

• {package_declarative_item}

• End [package] [identifier];

• Use clause allows us to make any 

name form a library or package 

directly visible

Use_clause <= Use selected_name {…};

Selected_name <=

Name.(identifier|character_literal|operator

_symbol|all)
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2.6.1 Procedures 

Example:

Procedure average_sample is

Variable total:real := 0.0;

Begin

Assert samples' length >0 severity failure;

For index in samples' range loop

Total :=total+sample(index);

End loop;

Average := total/real(samples' length);

End procedure average_samples;

The action of a procedure are invoked by 
a procedure call statement

Procedure_call_statement <= [label:] 
procedure_name;

Example:

Average_samples;
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2.6.1 Procedures (cont’d)

Return statement in a procedure
To handle exceptional conditions, the procedure may 
return in the middle of the procedure.

Return_statement <= [label:] return; 

Procedure parameters

Interface_list <= ([constant | variable | signal ] 
identifier {…}:[mode] subtype_indication
[:=static_expression]) {;…}

mode <= in | out | inout

Example :

Type func_code is (add, substract);

Procedure do_arith_op (op: in func_code) is

variable result: integer;

Begin

case op is

when add =>

result := op1+op2;

when subtract =>

result :=op1-op2;

end case;

End procedure do_arith_op;
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2.6.2 Functions

Example:

Function limit(value, min, max :integer) 
return integer is

Begin

If value > max then
Return max;

Elsif value < min then
Return min;

Else
Return value;

End if;

End function limit;

Pure and impure functions: 

Pure function: same parameter values 
for same results

Impure function: same parameter 
values for possible different results. 

Overloading 
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2.6.2 Functions (cont’d): Visibility of 

Declarations
Architecture arch of ent is

Type t is…;

Signal s:t;

Procedure p1(…) is  - - p1 t s are visible global

Variable v1:t;      -- v1 is visible only in procedure1

Begin

V1:=s;

End Procedure p1;

Begin – arch
Proc1: process is

Variable v2:t;                   -- v2 is visible in proc1

Procedure p2(…) is         --p2 is visible in proc1
Variable v3:t;                    --v3 is only visible in procedure2   

Begin
P1(v2, v3…);

End procedure p2;

Begin –proc1

P2(V2,…);

End process proc1;

Proc2: process is

…

Begin –proc2

P1(…);

End process proc2;

End architecture arch;
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2.6.3 Packages

Example :

Package cpu_type is
Constant word_size:positive := 16;

Constant address_size :positive :=24;

Subtype address is bit_vector(address_size-1 
downto 0);

End package cpu_type;
The cpu_type package has been analyzed and placed into 
the work library.

Entity address_decoder is
Port (addr : in work.cpu_types.address; 

……..);

End entity address_decoder;

Remarks:
Each package declaration that includes subprogram 

declarations or deferred constant declarations must have 
corresponding package body to fill in the missing details. 
However, if a package only include other kinds of 
declarations, such as types, signals, constant. No package 
body is necessary.
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2.6.3 Packages (cont’d) : Package 

bodies
Example :

Package some_arithmetic is

Function limit(value, min, max :integer) return
integer;

constant word_size:positive := 16;

Constant address_size :positive :=24;

……..

End package some_arithmetic;

Package body some_arithmetic is

Function limit(value, min, max :integer) return
integer is

Begin
If value > max then

Return max;

Elsif value < min then

Return min;

Else

Return value;

End if;

End function limit;

…..

End package body some_arithmetic;
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2.6.3 Use clause

Variable Next_address: work.cpu_types.address;

……..

Changes to

Use work.cpu_types;

Variable Next_address: cpu_types.address;

…..

Example:

Library ieee; 

use ieee.std_logic_1164.std_logic;

Entity logic_block is

Port (a, b: in std_logic;

Y,z: out std_logic);

End entity logic_Block;
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2.7 Resolved Signals & 

Generic Constants
Problem: Multiple output ports connecting one signal.

Type tri_state_logic is (‘0’, ‘1’, ‘z’);

Type tri_state_logic_array is array (integer range<>) 

of tri_state_logic;

Function resolve_tri_state_logic(value : in

tri_state_logic_array) return tri_state_logic is

Variable result : tri_state_logic :=‘Z’;

Begin 

For index in values' range loop

If values(index) /= ‘z’ then

Result :=values(index);

End if;

End loop;

Return result;

End function resolve_tri_state_logic;

Signal s1: resolve_tri_state_logic tri_state_logic;

Subtype resolved_logic is resolve_tri_state_logic

tri_state_logic;

Signal S2,S3: resolved_logic;
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2.7.1 Resolved Signals 

(cont’d)
IEEE std_logic_1164 resolved subtypes

Type std_ulogic is (‘U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’);

Type std_ulogic_vector is array (natural range<>) of 

std_ulogic;

Function resolved(s:std_ulogic_vector) return std_ulogic;

Subtype std_logic is resolved std_ulogic;

Type std_logic_vector is array (natural range <>) of 

std_logic;
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2.7.2 Generic Constants

Generic: writing parameterized models

Entity_declaration <=

Entity identifier is

[generic (generic_interface_list);]

[port (port_interface_list);]

{entity_declarative_item};

[begin

Concurrent_assertion_statement | 
passive_concurrent_procedure_call_statement | 
passiv_process_statement}]

End [entity] [identifier];

A simple example

Entity and2 is

Generic (Tpd : time);

Port (a,b :  in bit; y :out bit);

End entity and2;

Architecture simple of and2 is

Begin

And2_function:

Y<= a and b after Tpd;

End architecture simple;
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2.7.2 Generic Constants 

(cont’d)
A generic constant is given an actual value when the entity is 

used in a component instantiation statement.

• Component_instantiation_statement <=

Instantiation_label:

Entity entity_name [(architecture_identifier)]

[generic map (generic_association_list)]

[port map(port_association_list)];

Example to use and2 for component instantiation:

Gate1: entity work.and2(simple)

Generic map(Tpd => 2 ns)

Port map (a=>sig1,b=>sig2,y=>sig_out);

• For number of generic constants:

Entity control_unit is

Generic (Tpd_clk_out, tpw_clk : delay_length; debug: 

boolean:=false);

Port (clk : in bit; ready : in bit; control : out bit);

End entity control_unit;

Three ways to write a generic map:

Generic map(200ps, 1500 ps, false)

Generic map(tpd_clk_out=>200ps, tpw_clk=> 1500 ps)

Generic map(200ps, 1500 ps, debug => open) - - open means 

using the default value
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2.7.2 Generic Constants 

(cont’d)

Second use of generic constants is to 

parameterize their structure.

Entity reg is

Generic (width : positive);

Port(d: in bit_vector(0 to width –1);

q: out bit_vector(0 to width –1);

…);

End entity reg;

Signal in_data, out_data:bit_vector(0 to 

bus_size-1);

…

Ok_reg:entity work.reg

Generic map(width=>bus_size)

Port map(d=>in_data, q=> out_data,…);
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2.8 Components and 

Configurations
Component_declaration <=

Component identifier [is]

[generic (generic_interface_list);]

[port(port_interface_list);]

End component [identifeir];

Example:

component and2 –pre-defined part type

Port ( I1, I2 : in bit; O1 out bit);

End component;

Component_instantiation_statement <=

Instantiation_label:

[component] component_name

[generic map (generic_association_list)]

[port map(port_association_list)];
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2.8 Components and 

Configurations (cont’d)
Packaging components:

Library ieee; use ieee.std_logic_1164.all;

Package serial_interface_defs is

Subtype …

Constant …

Component serial_interface is

Port(…);

End component serial_interface;

End package serial_interface_defs;

Entity declaration:

Library ieee; use ieee.std_logic_1164.all;

Use work.serial_interface_defs.all;

Entity serial_interface is

Port(…);

End entity serial_interface;

An architecture body:

Library ieee; use ieee.std_logic_1164.all;

Architecture structure1 of micro controller is

Use work.serial_interface_defs.serial_interface;

Begin 

serial_a : component serial_interface

Port map(…);

…
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2.9 Synthesis and Simulation

• Simulation

• model testing

• model debugging

• Find design errors,

• Find  timing 

problems, 

• Synthesis

• Reduction of a 

design description 

to a lower-level 

circuit 

representation. 

• shorter design 

cycle

• Lower design cost

• Fewer design 

errors.

• Easier to determine 

available design 

trade-offs.



74

2.10 Predefined Environment

The package STANDARD is always 
available

Package STANDARD is

Type Boolean is (FALSE, TRUE);

Type BIT is (‘0’,’1’);

Type character is (ASCII characters);

Type severity_level is (note, warning, error, 
failure);

Type time is range implementation_defined

Units fs; ps=1000 fs; ns=1000 ps; 
us=1000ns;ms=1000us;sec=1000ms;min=6
0sec;hr=60 min;

End units

Predefined numeric types

Type integer is range 
implementation_defined;

Type real is range implementation_defined; 
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2.10 Predefined Environment (cont’d): 

standard package

Function Now return Time – function that 

returns current simulation time

Subtype Natural is integer range 0 to

integer' high;--numeric subtypes

Subtype positive is integer range 1 to 

integer' high;

Type string is array (positive range<>) of

character;

Type bit_vector is array(natural range <>)

of bit;

End STANDARD;
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2.10 Predefined Environment (cont’d)

Package TEXTIO is also always 

available

Package TEXTIO is

Type Line is access string;

Type text is file of string;

Type side is (right,left);

Subtype width is natural;

File Input :text is in “STD_INPUT”;

File output : text is out “STD_OUTPUT);

Procedure readline (F: in TEXT; L : out

Line);

Procedure read (L: inout line; V : out Bit); 

Procedure read (L: inout line; V : out

Bit_vector);

Procedure read (L: inout line; V : out

Boolean);
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2.10 Predefined Environment(cont’d): 

TEXTIO package

Procedure read (L: inout line; V : out character);

Procedure read (L: inout line; V : out integer);

Procedure read (L: inout line; V : out real);

Procedure read (L: inout line; V : out string);

Procedure read (L: inout line; V : out time);

Procedure writeline (F: out text; L :in line);

Procedure write (L:inout line; V : in bit; justified : 
in side := right; field : in width :=0);

Procedure write (L:inout line; V : in bit_vector; 
justified : in side := right; field : in width :=0);

Procedure write (L:inout line; V : in boolean; 
justified : in side := right; field : in width :=0);

Procedure write (L:inout line; V : in character; 
justified : in side := right; field : in width :=0);

Procedure write (L:inout line; V : in integer; 
justified : in side := right; field : in width :=0);

Procedure write (L:inout line; V : in real; justified : 
in side := right; field : in width :=0);

Procedure write (L:inout line; V : in string; justified 
: in side := right; field : in width :=0);

Procedure write (L:inout line; V : in time; justified : 
in side := right; field : in width :=0);

End textio;
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2.10 Predefined Environment: 

Standard IEEE Library

Package STD_logic _1164 is not part of the 
VHDL standard, but it is so widely used. To 
access the package, a VHDL program must 
include the following two lines at the beginning:

Library ieee;

Use ieee.std_logic_1164.all;

Signals in this library have nine values

Type std_logic is (
• ‘U’, --uninitialized

• ‘X’,--forcing unknown

• ‘0’—forcing 0

• ‘1’,--forcing 1

• ‘z’,--high impedance

• ‘w’,--weak unknown

• ‘l’,--weak 0

• ‘h’,--weak 1

• ‘-’); -- don’t care
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2.10 Predefined Environment:  

Standard IEEE Library (cont’d)

• The type STD_logic is provided with a 

resolution function that determines the final 

obtained when two or more buffers drive 

different values onto a signal

• The type STD_ULOGIC has the same nine 

signal values as STD_LOGIC, but without 

the resolution function.

Type std_logic_vector is

Array (natural range <>) of STD_logic;

Type std_ulogic_vector is

Array (natural range <>) of STD_ulogic;
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2.10 Predefined Environment: 

Standard IEEE Library (cont’d)

The standard IEEE library (cont’d)

• Function To_bit (S: std_ulogic; Xmap : 

Bit := ‘0’) return Bit;

• Function To_bitvector (S: 

std_logic_vector; Xmap : Bit := ‘0’)

return Bit_vector;

• Function To_bitvector (S: 

std_ulogic_vector; Xmap : Bit := ‘0’)

return Bit_vector;

• Function To_stdulogic (B: bit) return

std_ulogic;

• Function To_stdlogicvector (B: 

bit_vector) return std_logic_vector;

• Function To_stdulogic (B: 

std_ulogic_vector) return

std_logic_vector;

• Function To_stdulogic (B: bit_vector)

return std_ulogic_vector;


