
1

Unit 2. VHDL and Simulation

2.1 Introduction to VHDL

2.2 Scalar Data Types and Operations

2.3 Sequential Statement

2.4 Composite Data Types and

Operations

2.5 Modeling Constructs

2.6 Subprograms & Packages & use

clause

2.7 Resolved Signals & Generic

Constants

2.8 Components and Configurations

2.9 Synthesis and Simulation

2.10 Predefined Environments

2

2.1 Introduction to VHDL

• Conventional Hardware Specification

• Truth tables

• Boolean equations

• State diagrams

• Pseudo-code behavioral algorithms

• Schematic diagrams

• Netlist, proprietary cad formats

• Advantages

• Similar to methods in other engineering
areas

• Familiar, graphical

• Disadvantages

• Too many different method

• Specification languages typically are not
defined in syntax or semantics

• Specifications are not typically
manipulatable

3

2.1 Introduction to VHDL

(cont’d)

• Motivation of HDLs

• Obtain benefits of an unambiguous,

standard specification language

• Facilitate use of computer-aided design

(CAD) and computer-aided engineering

tools

• Facilitate exploration of rapidly

improving logic synthesis technology

• Increase designer efficiency, permit rapid

prototyping, reduce time-to market, etc.

• Some Common HDLs

• ABEL

• Verilog-HDL(cadence, IEEE 1364)

• VHDL (US DoD, now IEEE 1164 and

1076

4

2.1 Introduction to VHDL

cont’d: Synthesis Technology

• logic minimization
software

• PLA synthesis
software

• Multiple-level
combination logic
synthesis

• Sequential logic
synthesis

• Automatic mapping
to gate arrays,
standard cells,
(PLDs), FPGAs

• VHDL and logic

synthesis

• VHDL provided a

key platform for

commercializing

logic synthesis

technology

• IEEE standard

1076.3 defines a

subset of VHDL

for use by logic

synthesis tools

Evolution of synthesis technology

5

2.1.1History of VHDL

• Very high speed Integrated Circuit

Program

• The US department of Defense funded the

VHSIC program in the 1970’s and 1980’s

to promote the improvement of

semiconductor technology

• One product of the VHSIC program was

VHDL

• Originals of VHDL

• To improve documentation of complex

hardware designs and thus improve the

ability to subcontract the design of

military systems

• To provide a standard modeling and

simulation language

• Initial Standards: IEEE 1076 (1987)

6

2.1.2 Fundamental Concept:

A Simple Design

1 - - eqcomp4 is a four bit equality comparator

2 entity eqcomp4 is

3 port (a, b: in bit_vector(3 downto 0);

4 equals: out bit); -- equals is output

5 end entity eqcomp4;

6

7 architecture dataflow of eqcomp4 is

8 begin

9 equals <= ‘1’ when (a=b) else ‘0’;

10 end architecture dataflow;

11 - - end of the program

a b
Comparator equals

4 4

1

7

2.1.2 Example 2.1
Design an entity of a three input AND gate

1 - - three input and gate

2 entity and3 is

3 port (a, b, c : in bit;

4 d: out bit); -- d is output

5 end entity and3;

6

7 architecture structure1 of and3 is

8 begin

9 d <= a and b and c;

10 end architecture structure1;

11 - - end of the program

a
and3 db

c

8

2.1.2 Example 2.2 : An N-bit

Counter

Entity Counter is

Generic (N: Natural);

Port(Clk: in bit;

reset: in bit;

R: out natural range 0 to N-1);

End Entity counter;

Clk
Counter

R

Reset
1 1

9

2.1.2 Example 2.2 : An N-bit

Counter (cont’d)

Architecture sync of counter is

Signal C: Natural range 0 to N-1;

Begin

R<= C;

P_count : process (Clk) is

begin

If Clk =‘1’ and Clk’event then

If reset =‘1’ or C=‘N-1’ then
C<=0; -- clear counter

Else
C<=C+1;

End if;

End if;

End process P_count;

End architecture Sync;

Counter with Synch. reset

10

2.1.2 Example 2.2 : An N-bit

Counter (cont’d)

11

2.1.3 Lexical Elements

• Comments -- comments are important

• Identifiers are a sequence of non-space

characters that obey the following

rules

• Every character is either a letter, a digit,

or the underscore (_)

• The first character in the sequence is a

letter

• The sequence contains no adjacent

underscores, and the last character is not

an underscore

Remarks: VHDL identifiers are case-

insensitive

Some examples:

Last@value 5bit_counter _AO

Clock__pulse good_one

Extended identifiers: \999\

12

2.1.3 Lexical Elements (cont’d)

• Reserved words: words or keywords

are reserved for special use in VHDL.

They can’t be used as identifiers

13

2.1.3 Lexical Elements (cont’d)

• Special symbols

• $ ‘ () * +, - . / : ; < => |

• => ** := /+ >= <= <>

• Numbers: integer literal and real literal

• Example 10 0 102 4.13

• Exponential notation 46E3 1E+12 5e0

3.0e-3

• Base other than 10

• Base of 2 2#10000000#

• Base of 8 8#0.4#, what is this in decimal?

• Underline as separators:

• 123_456 3.141_592_6 2#1111_1100_0000#

• Characters

• ‘A’ --uppercase letter

• ‘z’ -- lower case letter

• ‘,’ -- coma

• ‘ ‘ --the separator character space

14

2.1.3 Lexical Elements

(cont’d)

• Strings: a sequence of characters

• “a string”

• “we can include and printing characters”

• “”

• “string in string ““a string ””. ”

• “if we can’t write a string in one line”

• &” then we break it into two lines”

• bit Strings

• B (base of 2) B “0101 0011”

• b“1111_0010”

• O (base of 8) O“372”

• X (base of 16) X“FA” what is this ?

• X “10” what is this one ?

15

2.1.4 Syntax Description

• Combine lexical elements to form valid VHDL

description

• Syntactic category

• Rules of syntax EBNF (Extended Backus-Naur

Form)

•Example of a variable assignment:

•Variable_assignment <= target:=expression;

•D0 := 25+6;

• Optional component []

•Function_call <= name[(association_list)]

• Combine alternatives |

•Mode <= in|out|inout

•Example for process statement

Process_statement <=

Process is

{process_item}

Begin

{sequential_statement}

End Process;-- will be talked about later on

16

2.2 Scalar Data Types and

Operations

2.2.1 Constants, variables, signals

Constant_declarations <=
Constant identifier {,…} : subtype_indication [:= expression];

-- constant have a value that is defined once during
initialization, and then remains unchanged.

-- constants in subprograms are recomputed each time the
subprogram is called

Examples:

Constant number _of_bytes : integer :=4;

Constant e : real := 2.718;

Constant prop_delay : time := 3 ns;

Variable_declarations <=
variable identifier {,…} : subtype_indication [:= expression];

-- have a value that is updated
immediately as a result of an assignment
statement.

Examples:

Variable index : integer := 0;

Variable start,finish : time := 0 ns;

17

2.2.1 Constants, Variables,

Signals

Signals:

• used to model hardware signal

conductors

• information is communicated between

design components only via signals.

• signals can have fixed links to other

signals.

• signals have a present value, as well as

a sequence of past and projected future

values (variables only have a present

value).

• signal values are scheduled to be

changed by means of assignment

statements:

• A<= new_constant_value;

18

2.2.1 Variable Versus signals?

Variable and signals are easily confused at first.

• Both signals and variables can be assigned
values (also, a signal can be assigned the
value of a variable, and vice versa)

Differences between the variables & signals

• Signal correspond to physical signals
associated with conductors or busses.

• Variables are a convenience for more easily
describing algorithms that might be used in
process and subprograms. There is not
necessarily any hardware associated with a
variable.

• A variable’s value can be changed
immediately as a result of an assignment
statement (which must use the := symbol).

• A signal’s value can be changed no sooner
than the beginning of the next simulation
cycle. The <= symbol must be used.

19

2.2.2 Scalar types

Type declarations
Type_declaration <= type identifiers is type_definition;

Example:

Type apples is range 0 to 100;

Example 2.2 :

Package int_types is

type small_int is range 0 to 255;

End package int_types;

Use work.int_types.all;

Entity small_adder is

port(a,b: in small_int; s: out small_int);

End entity small_adder;

20

2.2.2 Scalar types (cont’d)

Integer Types
Integer _Type_declaration <=

type identifiers is range expression (to | downto)

expression;

Example:

Type day_of_month is range 0 to 31;

Declare variable of this type:

Variable today: day_of_month := 9;

Floating Types …

Arithmetic operations:

• + - * /

• Mod rem abs **

21

2.2.2 Scalar types (cont’d)

Physical Types
Physical_type_definition <=

type identifiers is range expression (to | downto)

expression

Units

Identifier;

{identifier=physical_literal;}

End units [identifier]

Example:

Type resistance is range 0 to 1E9

Units

Ohm;

kohm = 1000 ohm;

Mohm = 1000 kohm;

End units resistance;

Declare variable of this type:

Variable R1: resistance := 900 ohm;

22

2.2.2 Scalar types (cont’d)

Enumeration Types:
Type water level is (too_low, low, high);

Characters …

Boolean types
Type boolean is (false, true);

Bits
Type bit is (‘0’,’1’);

Standard Logic
Type std_ulogic is (‘U’, --uninitilized

‘X’, --forcing unkown

‘0’, --zero

‘1’, --one

‘Z’, --high impedance

‘W’, -- weak unkown

‘L’, -- weak zero

‘H’, -- weak one

‘-’); --don’t care

Sub types
Subtype small_int is integer range –128 to 127

23

2.2.2 Scalar types (cont’d)

Type qualification

Type Logic_level is (unkown, low,
undriven, high);

Type system_state is (unkown, ready,
busy);

To distinguish between common unknown:
Use logic_level’(unkown) and

system_state’(unkown)

Type conversion:

real(123) integer(12.4)

Attributes of Scalar types:

• T’left – first(leftmost) value in T

• T’right last(rightmost) value in T

• T’low

• T’high

• T’ascending True if T is an ascending

• T’image(x)

• T’value(s)

24

2.2.2 Scalar Types (cont’d)

• VHDL is a strongly typed language

• every object has a unique type.

• objects of different types cannot be

mixed together in expressions.

• object typing can be determined

statically

• the type of every object must be clear

from the VHDL program before any

simulation has taken place.

• the types of object must be declared

explicitly in all program scopes.

25

2.3 Sequential Statement

2.3.1 if statement

2.3.2 case statement

2.3.3 Null statement

2.3.4 loop statement

2.3.5 assertion and report statements

26

2.3.1 If Statement

Syntax rule

If_statement <=
[if_label:]

If boolean_expression then

{sequential_statement}

{elsif boolean_expression then

{sequential_statement}}

[else

{sequential_statement}]

End if [if_label];

Example for If_statement <=
If (count =“00”) then

a<=b;

Elsif (count =“10”) then

a<=c;

Else

a<=d;

End if ;

a
b
c
d

count

1
11

1

2

27

2.3.2 Case Statement

Syntax rule
case_statement <=

[case_label:]

case expression is

(when choices => {sequential_statement})

{…}

End case [case_label];

Example for case_statement <=

case count is

When “00” =>

a<=b ;

When “10” =>

a<=c ;

When others =>

a<=d ;

End case ;

a
b
c
d

count

1
11

1

2

28

2.3.3 Null Statement

Null_statement <= [label:] null;

Example

case count is

When “00” =>

a<=b ;

When “10” =>

a<=c ;

When “01” =>

a<=d ;

When “11” =>

null ;

End case ;

a
b
c
d

count

1
11

1

2

29

2.3.4 Loop Statement

Infinite loop:

Loop_statement <=

[loop_label:]

loop

{sequential_statement}

End loop [loop_label] ;

Example: Loop

wait until clk =‘1’;

count <= count_value;

end loop;

While loop:

Loop_statement <=

[loop_label:]

while condition loop

{sequential_statement}

End loop [loop_label] ;

30

2.3.4 Loop Statement (cont’d)

Example for While loop:

n := 1;

Sum := 0;

while n <100 loop

n := n+1;

Sum := sum +n;

End loop ;

For loop:

Loop_statement <=

[loop_label:]

For identifiers in discrete range loop

{sequential_statement}

End loop [loop_label] ;

Example for the for loop

For n in 1 to 100 loop

Sum := sum +n;

End loop ;

31

2.3.4 Loop Statement (cont’d)

Exit statement <=

[label:] exit [loop_label] [when

boolean_expression];

Loop

wait until clk =‘1’ or reset =‘1’;

Exit when reset = ‘1’;

count <= count_value;

end loop;

NEXT statement

Loop

statement 1;

Next when condition

Statement 2;

End loop;

Loop

statement 1;

If not condition then

Statement 2;

End if;

End loop;

32

2.3.5 Assertion and Report

Statement

Assertion_statement <=

[label:] assert boolean_expression [report

expression] [severity expression];

assert initial_value <= max_value

report “ initial value too large”

33

2.4 Composite Data Types

and Operations

Array types
Type BIT is range 0 to 1;

Type word is array (31 downto 0) of bit;

Example:

Signal MEM_BUS: WORD;-- will be defined later

MEM_BUS(0) <= 0 ;

MEM_BUS(1) <=0 ;

MEM_BUS(2) <=1 ;

Records

Type time_stamp is record

seconds: integer range 0 to 59;

minutes: integer range 0 to 59;

hours : integer range 0 to 23;

End record time_stamp;

Variable sample_time, current_time: time_stamp;

Current_time.seconds := 30;

Current_time.hours := 13;

34

2.5 Modeling Constructs

• VHDL inherited many modularity ideas form
the DoD software language ADA

• Hardware specifications are composed of
five kinds of design units:
Entities

Architectures

Configurations

Packages

Package bodies

• Design units are provided to the VHDL
simulation and/or synthesis environment in
source files;

• Design units can also be included from
libraries of pre-designed data types, signal
types, signal type conversions, components
etc.

35

2.5.1 Modeling Constructs:

entity

Entity block is

Port (a, b: in bit;

c: buffer bit;

d: inout bit;

e: out bit);

End entity block;

buffer can be used for all output signals

a

b
c

d

e

in

in

buffer

inout

out

36

2.5.2 Modeling Constructs:

Architecture Bodies

Architecture_body <=

Architecture identifier of entity_name is

{block_declaration}

Begin

{ concurrent_statement}

End [architecture][identifier];

Example:

Entity adder is

Port (a: in word;

b: in word;

sum: out word);

End entity adder;

Architecture ad1 of adder is

Begin

Add_a_b: process(a,b) is

Begin

sum <= a+b;

End process add_a_b;

End architecture ad1;

Signal declarations
Signal_declaration <=

Signal identifier {…} : subtype_indication [:=

expression]

37

2.5.3 Two Main Levels of

VHDL Specification

1) Behavior level:

• What is the system supposed to do?

• Components described using algorithms
that do not necessarily reflect the actual
hardware structure of likely
implementations.

• Signal don’t necessary need to be binary
values. Data types can be chosen to
facilitate high-level description

2) Structure level:

• What is the structure of an
implementation?

• Design specified using realizable
components

• Binary representation of data types and
signals are used.

38

Example 2-to 4 Decoder

VHDL entity for the decoder

Entity decoder is

port (sel : in bit_vector (1 downto 0);

dout : out bit_vector (3 downto 0));

constant delay : time := 5 ns;

end entity decoder;

sel(0)

sel(1)

dout(0)
dout(1)
dout(2)
dout(3)

39

Behavior-level architecture in

VHDL

Behavior-level architecture in VHDL

Architecture behavior1 of decoder is

begin

with sel select

dout <=

“0001” after delay when “00”,

“0010” after delay when “01”,

“0100” after delay when “10”,

“1000” after delay when “11”,

end behavior1 ;

sel(0)

sel(1)

dout(0)
dout(1)
dout(2)
dout(3)

40

Structure-level architecture

Architecture structure1 of decoder is

component and2 –pre-defined part type

Port (I1, I2 : in bit; O1 out bit);

End component;

component inverter –pre-defined part type

Port (I1 : in bit; O1 out bit);

End component;

Signal sel_bar: bit_vector (1 downto 0);

Begin

inv_0: inverter port map (I1=>sel(0),
O1=>sel_bar(0));

inv_1: inverter port map (I1=>sel(1),
O1=>sel_bar(1));

and_0:and2

port map (I1=>sel_bar(0), I2=>sel_bar(1),
O1=>dout(0));

and_1:and2

port map (I1=>sel(0), I2=>sel_bar(1), O1=>dout(1));

and_2:and2

port map (I1=>sel_bar(0), I2=>sel(1), O1=>dout(2));

and_3:and2

port map (I1=>sel(0), I2=>sel(1), O1=>dout(3));

End structure1 ;

41

Structure-level schematic

42

2.5.4 Modeling Constructs

Signal assignment

Signal_assignment_statement <=

[label:] name <= [delay] waveform;

Waveform <= (value_expression [after

time_expression]) {…}

y <= a or b after 5 ns;

Wait statement <=

[label:] wait [on signal name {…}]

[until boolean_expression]

[for time_expression];

43

2.5.4 Modeling Constructs

(cont’d): signal attributes
S’delayed(T)

• if T>0, then a signal is returned that is
identical to S delayed by time T. If T=0 (or
is absent), then S is returned delayed by time
delta.

S’stable(T)

• if T>0, then a signal is returned that has
value TRUE if S has not changed for the past
time T; at other times the signal has value
FALSE. If T=0 (or is absent), then the signal
will be FALSE during a simulation cycle
when S changes values; otherwise the signal
is TRUE.

S’quiet(T)

• if T>0, then a signal is returned that has
value TRUE if S has not been updated for the
past time T; at other times the signal has
value FALSE. If T=0 (or is absent), then the
signal will be FALSE during a simulation
cycle when S is updated; otherwise the signal
is TRUE.

44

2.5.4 Modeling Constructs

(cont’d): signal attributes

S’active(T)

• Boolean that is true if signal S has been

updated during the current simulation cycle

S’event

• Boolean that is true if signal S has changed

value during the current simulation cycle

S’LAST_EVENT

• The amount of time elapsed since signal S

last changed value.

S’LAST_ACTIVE

• The amount of time elapsed since signal S

was last updated.

S’LAST_VALUE

• The value of signal S before the last time that

signal S changed values.

45

2.5.4 Modeling Constructs (cont’d)

Delay_mechanism<=

transport | [reject time_expression]

inertial

Example for transport:

Line_out <= transport line_in after 3 ns;

Remarks: the output is shift by the time delay

Example for inertial delay:

Line_out <= inertial not line_in after 3 ns;

• Remarks: if a signal would produce an output

pulse shorter than the propagation delay, the the

output pulse does not happen

Line_in

Line_out

Line_in

Line_out

46

2.5.4 Modeling Constructs

(cont’d)

Example for both inertial and reject
Line_out <= reject 2 ns inertial not line_in after 3 ns;

Remarks: if a signal would produce an output pulse

shorter than the reject limit delay, the the output

pulse does not happen

Process statements <=

[process_label:]

Process [(signal_name{…})] [is]

{ process_item}

Begin

{sequential_statement}

End process [process_label]

47

2.5.5 Modeling Concurrency

• In real digital hardware, components all

operate at the same time and signals are

updated in parallel.

• How to model concurrency/parallel in VHDL

• Components models are decomposed into

processes that execute in parallel

• Different signals have values that change in

parallel over time

• VHDL provides the ability to specify times

in the future when signals will be updated.

• VHDL provides the ability to specify

synchronization points, when the values of a

group of signals are examined and/or updated

for the same time instant.

48

2.5.5 Modeling

Concurrency(cont’d)

VHDL processes can be used for
concurrent statement

Example :

Proc1: process(A,B) [is]

Begin

C<= A or B after 5 ns;

End process;

Another example:

Proc2: process(A,B)

Begin

C<= A or B;

Wait on A, B;

End process;

49

2.5.5 Modeling

Concurrency(cont’d)

• A VHDL process can be thought of as a sub-
program that is called once at the beginning
of the simulation

• All VHDL processes execute in parallel

• When the simulation starts, each process
begins executing statements following the
begin statement

• Execution is suspended when the next wait
statement is encountered

• Wait; - suspends process forever

• Wait on signal_list;

• Wait until condition;

• Wait for time_value;

• Once the end process statement is
encountered, execution returns to the
statement following the begin statement.

50

2.5.5 Modeling

Concurrency(cont’d):

Concurrent Statements

Sequence of Boolean equations:

F <= a nor b nor c;

D <= a and b and c;

E <= a nor b or c;

When-else conditional signal
assignment:

Architecture example of fsm is

…

With state select

X<= “0000” when s0|s1

“0010” when s2|s3;

Y when s4;

Z when others;

End example;

51

2.5.5 Modeling

Concurrency(cont’d):

Concurrent Statements

Multiple assignment using Generate:

g1: for j in 0 to 2 generate

a(j) <= b(j) or c(j);

End generate g1;

g2: c(1) <=c(0) and a(1);

For k in 2 to 20 generate

c(k) <= c(k-1) and a(k);

End generate g2;

g3: For l in 0 to 8 generate

Reg1: register9 port map (clk, reset, enable, d_in(l),

d_out(l));

End generate g3;

52

2.5.6 Example : Counter with

asyn. reset
Entity Counter is

Generic (N: Natural);

Port(Clk: in bit;

reset: in bit;

R: out natural range 0 to N-1);

End counter;

Architecture Async of counter is
Signal C: Natural range 0 to N-1;

Begin

R<= C;

P_count : process (Clk, reset)

begin

If reset =‘1’ then

C <=0; -- clear the counter

elsIf clk =‘1’ and clk`event then
If C = N-1 then

C<=0; -- clear counter

Else
C<=C+1;

End if;

End if;

End process P_count;

End Async;

53

2.5.6 Example counter with

asynch. Reset (cont’d)

Clk
register

C

Reset

MUX

0

R

A B
Comparator

N-1

A=B

+1

54

2.5.6 Modeling Finite State

Machine

• VHDL is easy to implement finite

state machines

• When combined with logic synthesis,

a hardware designer no longer needs to

be concerned with the problems of

state assignments, logic minimization,

etc.

• Instead the designer can concentrate

on high level behavior.

55

2.5.6 Modeling Finite State

Machine : Example

Present Next state Output

State X=0 X=1 X=0 X=1

S0 S1 S1 0 0

S1 S2 S1 0 0

S2 S2 S1 0 1

56

Architecture of State Machine
Architecture state_machine of example is

Type stateType is (s0,s1,s2);

Signal present_state,next_state:stateType;

Begin

Comb logic: process(present_state,x)

Begin

Case present_state is

When s0 => output <=‘0’;

Next_state <=s1;

When s1 => output <=‘0’;

If (x=‘1’) then Next_state <=s1;

Else Next_state <=s2;

End if;

When s2 =>

If (x=‘1’) then Next_state <=s1; Output <=‘1’;

Else Next_state <=s2; output <=‘0’;

End if;

End case;

End process comb_logic;

57

2.6 Subprograms & Packages

& use clause (cont’d)
Procedure encapsulates a collection of
sequential statements that are executed for
their effect

Subprogram_body <=
Procedure identifier [(parameter_list)] is

Begin

{sequential_statement}

End [procedure] [identifier];

Function encapsulates a collection of
statement that compute a result

Subprogram_body <=
[pure | impure]

Function identifier [(parameter_list)] return
type_mark is

{subprogram_declarative_item}

Begin

{sequential_statement}

End [function] [identifier];

Return_statement <= [label:] return
expression;

58

2.6 Subprograms & Packages

& use clause (cont’d)

• Package provide an important

way of organizing the data and

subprogram declared in a model

• Package_declaration <=

• package identifier is

• {package_declarative_item}

• End [package] [identifier];

• Use clause allows us to make any

name form a library or package

directly visible

Use_clause <= Use selected_name {…};

Selected_name <=

Name.(identifier|character_literal|operator

_symbol|all)

59

2.6.1 Procedures

Example:

Procedure average_sample is

Variable total:real := 0.0;

Begin

Assert samples' length >0 severity failure;

For index in samples' range loop

Total :=total+sample(index);

End loop;

Average := total/real(samples' length);

End procedure average_samples;

The action of a procedure are invoked by
a procedure call statement

Procedure_call_statement <= [label:]
procedure_name;

Example:

Average_samples;

60

2.6.1 Procedures (cont’d)

Return statement in a procedure
To handle exceptional conditions, the procedure may
return in the middle of the procedure.

Return_statement <= [label:] return;

Procedure parameters

Interface_list <= ([constant | variable | signal]
identifier {…}:[mode] subtype_indication
[:=static_expression]) {;…}

mode <= in | out | inout

Example :

Type func_code is (add, substract);

Procedure do_arith_op (op: in func_code) is

variable result: integer;

Begin

case op is

when add =>

result := op1+op2;

when subtract =>

result :=op1-op2;

end case;

End procedure do_arith_op;

61

2.6.2 Functions

Example:

Function limit(value, min, max :integer)
return integer is

Begin

If value > max then
Return max;

Elsif value < min then
Return min;

Else
Return value;

End if;

End function limit;

Pure and impure functions:

Pure function: same parameter values
for same results

Impure function: same parameter
values for possible different results.

Overloading

62

2.6.2 Functions (cont’d): Visibility of

Declarations
Architecture arch of ent is

Type t is…;

Signal s:t;

Procedure p1(…) is - - p1 t s are visible global

Variable v1:t; -- v1 is visible only in procedure1

Begin

V1:=s;

End Procedure p1;

Begin – arch
Proc1: process is

Variable v2:t; -- v2 is visible in proc1

Procedure p2(…) is --p2 is visible in proc1
Variable v3:t; --v3 is only visible in procedure2

Begin
P1(v2, v3…);

End procedure p2;

Begin –proc1

P2(V2,…);

End process proc1;

Proc2: process is

…

Begin –proc2

P1(…);

End process proc2;

End architecture arch;

63

2.6.3 Packages

Example :

Package cpu_type is
Constant word_size:positive := 16;

Constant address_size :positive :=24;

Subtype address is bit_vector(address_size-1
downto 0);

End package cpu_type;
The cpu_type package has been analyzed and placed into
the work library.

Entity address_decoder is
Port (addr : in work.cpu_types.address;

……..);

End entity address_decoder;

Remarks:
Each package declaration that includes subprogram

declarations or deferred constant declarations must have
corresponding package body to fill in the missing details.
However, if a package only include other kinds of
declarations, such as types, signals, constant. No package
body is necessary.

64

2.6.3 Packages (cont’d) : Package

bodies
Example :

Package some_arithmetic is

Function limit(value, min, max :integer) return
integer;

constant word_size:positive := 16;

Constant address_size :positive :=24;

……..

End package some_arithmetic;

Package body some_arithmetic is

Function limit(value, min, max :integer) return
integer is

Begin
If value > max then

Return max;

Elsif value < min then

Return min;

Else

Return value;

End if;

End function limit;

…..

End package body some_arithmetic;

65

2.6.3 Use clause

Variable Next_address: work.cpu_types.address;

……..

Changes to

Use work.cpu_types;

Variable Next_address: cpu_types.address;

…..

Example:

Library ieee;

use ieee.std_logic_1164.std_logic;

Entity logic_block is

Port (a, b: in std_logic;

Y,z: out std_logic);

End entity logic_Block;

66

2.7 Resolved Signals &

Generic Constants
Problem: Multiple output ports connecting one signal.

Type tri_state_logic is (‘0’, ‘1’, ‘z’);

Type tri_state_logic_array is array (integer range<>)

of tri_state_logic;

Function resolve_tri_state_logic(value : in

tri_state_logic_array) return tri_state_logic is

Variable result : tri_state_logic :=‘Z’;

Begin

For index in values' range loop

If values(index) /= ‘z’ then

Result :=values(index);

End if;

End loop;

Return result;

End function resolve_tri_state_logic;

Signal s1: resolve_tri_state_logic tri_state_logic;

Subtype resolved_logic is resolve_tri_state_logic

tri_state_logic;

Signal S2,S3: resolved_logic;

67

2.7.1 Resolved Signals

(cont’d)
IEEE std_logic_1164 resolved subtypes

Type std_ulogic is (‘U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’);

Type std_ulogic_vector is array (natural range<>) of

std_ulogic;

Function resolved(s:std_ulogic_vector) return std_ulogic;

Subtype std_logic is resolved std_ulogic;

Type std_logic_vector is array (natural range <>) of

std_logic;

68

2.7.2 Generic Constants

Generic: writing parameterized models

Entity_declaration <=

Entity identifier is

[generic (generic_interface_list);]

[port (port_interface_list);]

{entity_declarative_item};

[begin

Concurrent_assertion_statement |
passive_concurrent_procedure_call_statement |
passiv_process_statement}]

End [entity] [identifier];

A simple example

Entity and2 is

Generic (Tpd : time);

Port (a,b : in bit; y :out bit);

End entity and2;

Architecture simple of and2 is

Begin

And2_function:

Y<= a and b after Tpd;

End architecture simple;

69

2.7.2 Generic Constants

(cont’d)
A generic constant is given an actual value when the entity is

used in a component instantiation statement.

• Component_instantiation_statement <=

Instantiation_label:

Entity entity_name [(architecture_identifier)]

[generic map (generic_association_list)]

[port map(port_association_list)];

Example to use and2 for component instantiation:

Gate1: entity work.and2(simple)

Generic map(Tpd => 2 ns)

Port map (a=>sig1,b=>sig2,y=>sig_out);

• For number of generic constants:

Entity control_unit is

Generic (Tpd_clk_out, tpw_clk : delay_length; debug:

boolean:=false);

Port (clk : in bit; ready : in bit; control : out bit);

End entity control_unit;

Three ways to write a generic map:

Generic map(200ps, 1500 ps, false)

Generic map(tpd_clk_out=>200ps, tpw_clk=> 1500 ps)

Generic map(200ps, 1500 ps, debug => open) - - open means

using the default value

70

2.7.2 Generic Constants

(cont’d)

Second use of generic constants is to

parameterize their structure.

Entity reg is

Generic (width : positive);

Port(d: in bit_vector(0 to width –1);

q: out bit_vector(0 to width –1);

…);

End entity reg;

Signal in_data, out_data:bit_vector(0 to

bus_size-1);

…

Ok_reg:entity work.reg

Generic map(width=>bus_size)

Port map(d=>in_data, q=> out_data,…);

71

2.8 Components and

Configurations
Component_declaration <=

Component identifier [is]

[generic (generic_interface_list);]

[port(port_interface_list);]

End component [identifeir];

Example:

component and2 –pre-defined part type

Port (I1, I2 : in bit; O1 out bit);

End component;

Component_instantiation_statement <=

Instantiation_label:

[component] component_name

[generic map (generic_association_list)]

[port map(port_association_list)];

72

2.8 Components and

Configurations (cont’d)
Packaging components:

Library ieee; use ieee.std_logic_1164.all;

Package serial_interface_defs is

Subtype …

Constant …

Component serial_interface is

Port(…);

End component serial_interface;

End package serial_interface_defs;

Entity declaration:

Library ieee; use ieee.std_logic_1164.all;

Use work.serial_interface_defs.all;

Entity serial_interface is

Port(…);

End entity serial_interface;

An architecture body:

Library ieee; use ieee.std_logic_1164.all;

Architecture structure1 of micro controller is

Use work.serial_interface_defs.serial_interface;

Begin

serial_a : component serial_interface

Port map(…);

…

73

2.9 Synthesis and Simulation

• Simulation

• model testing

• model debugging

• Find design errors,

• Find timing

problems,

• Synthesis

• Reduction of a

design description

to a lower-level

circuit

representation.

• shorter design

cycle

• Lower design cost

• Fewer design

errors.

• Easier to determine

available design

trade-offs.

74

2.10 Predefined Environment

The package STANDARD is always
available

Package STANDARD is

Type Boolean is (FALSE, TRUE);

Type BIT is (‘0’,’1’);

Type character is (ASCII characters);

Type severity_level is (note, warning, error,
failure);

Type time is range implementation_defined

Units fs; ps=1000 fs; ns=1000 ps;
us=1000ns;ms=1000us;sec=1000ms;min=6
0sec;hr=60 min;

End units

Predefined numeric types

Type integer is range
implementation_defined;

Type real is range implementation_defined;

75

2.10 Predefined Environment (cont’d):

standard package

Function Now return Time – function that

returns current simulation time

Subtype Natural is integer range 0 to

integer' high;--numeric subtypes

Subtype positive is integer range 1 to

integer' high;

Type string is array (positive range<>) of

character;

Type bit_vector is array(natural range <>)

of bit;

End STANDARD;

76

2.10 Predefined Environment (cont’d)

Package TEXTIO is also always

available

Package TEXTIO is

Type Line is access string;

Type text is file of string;

Type side is (right,left);

Subtype width is natural;

File Input :text is in “STD_INPUT”;

File output : text is out “STD_OUTPUT);

Procedure readline (F: in TEXT; L : out

Line);

Procedure read (L: inout line; V : out Bit);

Procedure read (L: inout line; V : out

Bit_vector);

Procedure read (L: inout line; V : out

Boolean);

77

2.10 Predefined Environment(cont’d):

TEXTIO package

Procedure read (L: inout line; V : out character);

Procedure read (L: inout line; V : out integer);

Procedure read (L: inout line; V : out real);

Procedure read (L: inout line; V : out string);

Procedure read (L: inout line; V : out time);

Procedure writeline (F: out text; L :in line);

Procedure write (L:inout line; V : in bit; justified :
in side := right; field : in width :=0);

Procedure write (L:inout line; V : in bit_vector;
justified : in side := right; field : in width :=0);

Procedure write (L:inout line; V : in boolean;
justified : in side := right; field : in width :=0);

Procedure write (L:inout line; V : in character;
justified : in side := right; field : in width :=0);

Procedure write (L:inout line; V : in integer;
justified : in side := right; field : in width :=0);

Procedure write (L:inout line; V : in real; justified :
in side := right; field : in width :=0);

Procedure write (L:inout line; V : in string; justified
: in side := right; field : in width :=0);

Procedure write (L:inout line; V : in time; justified :
in side := right; field : in width :=0);

End textio;

78

2.10 Predefined Environment:

Standard IEEE Library

Package STD_logic _1164 is not part of the
VHDL standard, but it is so widely used. To
access the package, a VHDL program must
include the following two lines at the beginning:

Library ieee;

Use ieee.std_logic_1164.all;

Signals in this library have nine values

Type std_logic is (
• ‘U’, --uninitialized

• ‘X’,--forcing unknown

• ‘0’—forcing 0

• ‘1’,--forcing 1

• ‘z’,--high impedance

• ‘w’,--weak unknown

• ‘l’,--weak 0

• ‘h’,--weak 1

• ‘-’); -- don’t care

79

2.10 Predefined Environment:

Standard IEEE Library (cont’d)

• The type STD_logic is provided with a

resolution function that determines the final

obtained when two or more buffers drive

different values onto a signal

• The type STD_ULOGIC has the same nine

signal values as STD_LOGIC, but without

the resolution function.

Type std_logic_vector is

Array (natural range <>) of STD_logic;

Type std_ulogic_vector is

Array (natural range <>) of STD_ulogic;

80

2.10 Predefined Environment:

Standard IEEE Library (cont’d)

The standard IEEE library (cont’d)

• Function To_bit (S: std_ulogic; Xmap :

Bit := ‘0’) return Bit;

• Function To_bitvector (S:

std_logic_vector; Xmap : Bit := ‘0’)

return Bit_vector;

• Function To_bitvector (S:

std_ulogic_vector; Xmap : Bit := ‘0’)

return Bit_vector;

• Function To_stdulogic (B: bit) return

std_ulogic;

• Function To_stdlogicvector (B:

bit_vector) return std_logic_vector;

• Function To_stdulogic (B:

std_ulogic_vector) return

std_logic_vector;

• Function To_stdulogic (B: bit_vector)

return std_ulogic_vector;

