
163

III. Digital

Design &

Applications

164

3. Digital Design and

Applications

• 3.1 Introduction to Digital System

Design

• 3.2 Register-Transfer Level

• 3.3 Impediments to Synchronous

Design

• 3.4 Variable Entered Maps

• 3.5 Design steps for a digital

system

• 3.6 Digital Design Example

165

3.1.1 Problems for classical

Sequential Design

• Classical sequential circuit design

techniques could, in theory, be used in

arbitrarily complex design problems.

• In practice, however, classical

techniques are ineffective for all but

the simplest problems.

• Reason:

• The complexity of the design problem

overwhelms the human designer‘s ability

to find a correct solution

• Using classical techniques leads to

designs that are

• Hard to understand, hard to modify, and hard

to test

166

3.1.2 Software solutions to

Digital System Design

• Advantages:

• No need to design

hardware

• Software is relatively

easy to

change/customize

• Complex features can

be readily provided in

software

• Can test software

designs using

emulators.

• Disadvantages

• Microprocessors can be
overly complicated for
many controller
problems

• Custom hardware can
provide better
performance than
general-purpose
hardware

• Custom techniques are
still required in custom
or semi custom
integrated circuits

• Custom designs can be
protected using patent
or IC mask laws

•Many digital design problems are entirely

solvable using custom software and standard

microprocessor: examples ?

167

3.1.3 Basic Strategies in

Digital System Design
• Top-down design

• Manage design complexity.

• Postpone commitment to any particular
hardware

• Use iterative refinement to gradually
converge on a natural solution

• Decompose a module into loosely
interacting sub modules

• Design using high-level building blocks

• Conservative/safe design techniques

• Use synchronous hardware wherever
possible

• Convert asynchronous inputs to
synchronous inputs

• Use a robust system-wide clocking
strategy

• Make design static if possible(ie. Correct
operation is independent of clock speed)

168

3.1.3 Basic Strategies in

Digital System Design

(cont‘d)

• Conservative/safe design techniques

• Provide a single stepping mode

• Make design testable by construction

• Avoid obscure design tricks

• Document the design thoroughly

• Requirement, (user-oriented),

specification (designer-oriented)

• Reasons for designs decisions

• List relevant standards

• Propose test plans

• Develop maintenance procedures

• Consider manufacturability issues

169

3.1.4 Signals at External

Interface

• System level control signals:

• Highest level commands

• External user is shielded form internal details

• System level status signals

• Simplified high-level status information is
provided to the external user

• Data in

• Analog signals are typical converted to digital
processing

• Data out

• Analog signals may need to be reconstructed from
their internal digital representation

Digital
system

control
 signal

status
signal

data in

data out

170

3.1.5 Highest Level of System

Architecture

• Control path

• Circuit that control

algorithm by which

operators are

applied to the data

• State control and

data operation

sequencing are

emphasized

• Typical control

units:

• Registers

• Next state logic

• Output logic

• Control+status line

• Data path

• Circuits that

directly store and

transform the data

• Bit parallelism and

regular structure

are emphasized

• Typical data path

elements:

• Registers

• Multiplexes

• Shift/adders/ALUs

• Counters

• buses

171

3.1.5 Highest Level of System

Architecture (cont‘d)

controller

data in

internal
control
signal

data path

data out

external
control
signal

internal
status
signal

external
status
signal

172

3.2 Register Transfer Level

• A convenient conceptual level
intermediate between the system level
and the gate level

• RTL assumes a set of hardware constructs
are defined in FPGA hardware and library
elements

• HDL code is mapped to these constructs

• Describe the operation of synchronous
system

• Combine the control-flow state machine
with means for defining and operating
multi-bit registers

• Typical RTL constructs:

• Combinational logic

• Arbitrary functions (random logic,
ROMs, PALs, PLAs)

• Multiplexers

• Demultiplexers/decoders

• Comparators

• Arithmetic./logic circuits (ALUs,
adders, subtractors)

173

3.2 Register Transfer Level

(cont‘d)

• Sequential Logic

• Latches, flip-flops

• Registers, shift registers

• Counters, LFSRs

• RAMs

• Interconnect:

• Buses

• Wires

• Buffers

• Tri-state able buffers

• Bi-directional transceivers

174

3.2.1 Multiplexers (Mux)

• Multiplexer is a digital switch

• It connects data from one of n sources to

its output.

• A logic equation:

• Summation symbol represents a logical

sum of product terms

• iY is a particular output bit (1 <= i< =b)

• iDj is input bit I of source j (0<=j<=n-1)

• Mj represents minterm j of the s select

inputs

• ? The relationship between S and n

1

0

n

j j

j

iY EN M iD




  

data out

Enable

select
s

b

b

b

n data
source

EN

SEL

D0

D1

Dn-1

b

Multiplexer

175

3.2.1 Multiplexers (cont‘d)

• Example 4 to 1 MUX

• How to implement?

4 X 1

MUX

Io

S1

I1

I2

I3

EN

S0

Y EN S1 S0 Y

1 x x 0

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

176

3.2.1 Multiplexers in VHDL

(cont‘d)

• Mutiplexers are very easy to describe in

VHDL.

• Example for 4 in 1 bit MUX:

• Entity mux4in1b is

• Port (S : in std_logic_vector (1 downto 0);

• I0, I1, I2, I3 : in std_logic;

• Y: out std_logic

•);

• End mux4in1b;

• Architecture mux4_1b of mux4in1b is

• Begin

• with S select Y<=

• I0 when ―00‖,

• I1 when ―01‖,

• I2 when ―10‖,

• I3 when ―11‖,

• End mux4in1b;

177

3.2.1 Expanding Multiplexers

• Expand 4 input 1 bit output multiplexer to 4
input 8 bit output multiplexer

• Entity mux4in8b is

• Port (S : in std_logic_vector (1 downto 0);

• I0, I1, I2, I3 : in std_logic_vector (1 to 8) ;

• Y: out std_logic_vector (1 to 8)

•);

• End mux4in8b;

• Architecture mux4in_8b of mux4in8b is

• Begin

• with S select Y<=

• I0 when ―00‖,

• I1 when ―01‖,

• I2 when ―10‖,

• I3 when ―11‖,

• End mux4in_8b;

178

3.2.1 Expanding Multiplexers

(cont‘d)

• Expand 4 input 1 bit output

multiplexer to 8 input 1 bit output

multiplexer

• How to implement it in VHDL?

4 X 1

MUX

Io

S1

I1

I2

I3

EN

S0

Y

4 X 1

MUX

Io

S1

I1

I2

I3

EN

S0

Y

179

3.2.2 DeMultiplexers

• Used to direct data to one of two or

more possible destinations

data in

Enable

select
s b

b

b

 data out

EN

SEL Y0

Y1

Yn-1

b

DeMultiplexer

DE

MUX

Y0

S1

Y1

Y2

Y3

E

S0

S1 S0 Y0 Y1 Y2 Y3

0 0 E 1 1 1

0 1 1 E 1 1

1 0 1 1 E 1

1 1 1 1 1 E

180

3.2.2 DeMultiplexers in

VHDL

• Example for demux:

• Entity Demux is

• Port (S : in std_logic_vector (1 downto 0);

• E : in std_logic;

• Y0, Y1, Y2, Y3: out std_logic

•);

• End Demux;

• Architecture Demux of demux is

• Begin

case S is

When ―00‖ =>

Y0<=E ;

When ―01‖ =>

Y1<=E ;

When ―10‖ =>

Y2<=E ;

When ―11‖ =>

Y3<=E ;

End case ;

• End demux;

181

3.2.3 Comparators

• Comparing two binary words for

equality

A B
A=B?

4 4

1

A0 B0 A1 B1 A2 B2 A3 B3

A=B

PI

CI module Co

Po

PI

CI module Co

Po

PI

CI module Co

Po

PI0 PI1 PIn-1

Po0 Po1 Pon-1

C0 C1 C2
Cn-1

Cn

cascading

input

cascading

output

182

3.2.3 Comparators in VHDL

• Example of four bit equality comparator

• entity eqcomp4 is

• port (A0, B0, A1, B1, A2, B2, A3, B3
: in Std_logic; equals: out std_logic);

• end eqcomp4;

• architecture structure1 of eqcomp4 is

• Signal O0, O1, O2,O3 : Std_logic;

• begin

• O0 <= A0 xor B0;

• O1 <= A1 xor B1;

• O2 <= A2 xor B2;

• O3 <= A3 xor B3;

• Equals <= O0 and O1 and O2 and O3;

• end structure1;

• How to implement cascade comparator in VHDL
?

183

3.2.4 Binary Adders

• Half adders: adds two 1 bit operands X and

Y, producing a 2-bit sum. The lower-order

bit of the sum may be named HS (half sum),

and the higher-order bit may be named CO

(carry out)

• HS= X xor Y=XY‘+X‘Y

• CO=XY

• Full adders: to add operands with more than

one bit, we must provide for carries between

bit positions. The building block for this

operation called full adder.

• Besides the added-bit inputs X and Y, a full

adder has a carry-bit input, Cin.

• Out put is named S (sum) and Cout (carry

out)

• S= X xor Y xor Cin

• Cout=XY+XCin+YCin

184

3.2.4 Binary Adders (cont‘d)

(a) One possible circuit that performs the

full adder equations

(b) The corresponding logic symbol

(c) symbol for cascaded full adders

X Y
Cout Cin

S

X

Y

Cin

S

Cout

full adder

Y S

Cout

(a)

(b)

(c)

X

Cin

1 1

11

1

185

• Entity for a full adder

• entity adder is

• port (X, Y, Cin : in Std_logic;

• S, Cout : out Std_logic);

• end adder;

• Ripple adder : two binary words, each

with n bits, can be added using a ripple

adder– cascade of n full-adder stages,

each of which handles one bit.

• Ripple adder is slow, why ?

• Some other adders ?

X Y
Cout Cin

S

S3

C4

X3 Y3

X Y
Cout Cin

S

S2

C3

X2 Y2

X Y
Cout Cin

S

C2

X1 Y1

X Y
Cout Cin

S

C1

X0 Y0

C0

S1 S0

3.2.4 Binary Adders (cont‘d)

186

3.2.4 Binary Adders in VHDL
• entity rippleadder is

• port (X, Y: in Std_logic_vector(0 to 3);

• S : out std_logic_vector(0 to 3);

• Cout : out Std_logic);

• end rippleadder;

Architecture structure1 of rippleadder is

component adder –pre-defined part type

port (X, Y, Cin : in Std_logic;

• S, Cout : out Std_logic);

End component;

Signal Cout0cin1, cout1cin2, cout2cin3 : in std_logic;

Begin

adder_0: adder port map (X=>X(0), Y=>Y(0),Cin
=>low, S=> s(0), Cout => Cout0cin1);

adder_1: adder port map (X=>X(1), Y=>Y(1),Cin
=>Cout0cin1, S=> s(1), Cout => Cout1cin2);

adder_1: adder port map (X=>X(0), Y=>Y(0),Cin
=>Cout1cin2, S=> s(2), Cout => Cout2cin3);

adder_1: adder port map (X=>X(0), Y=>Y(0),Cin
=>Cout2cin3, S=> s(3), Cout => Cout);

End structure1 ;

X Y
Cout Cin

S

S3

C4

X3 Y3

X Y
Cout Cin

S

S2

C3

X2 Y2

X Y
Cout Cin

S

C2

X1 Y1

X Y
Cout Cin

S

C1

X0 Y0

C0

S1 S0

187

3.2.4 A Design Example:

Recursive Adder/Subtractor

• Objective: Implement an adder and

subtractor using VHDL.

• Design steps

• Define Specifications

• Data Path Design

• Control Path Design

• Simulation

• Hardware Implementation

• Testing

188

3.2.4 Define Specifications

• 4-bit Switch Input A

• 4-bit Switch Input B

• 1 bit switch for Opcode.

• LED output 4 LED for Sum, one for

• Cout, one done signal

• Restricted building blocks:

• An inverter, 2 2N-N mux, three registers

and an adderN.

A B

Sum Cout

OPcode

4 4

4

Done

189

3.2.4 Define Specifications

• Opcode 0, A+B

• example 0101+0111

• Opcode 1, A-B=A+NotB+1

• Example 1100-0011=?

• Adder implementation

• Ripple adder

• fast adder

• Register ? Synchronize the add and

subtract procedure

Q3 Q2 Q1 Q0

D3 D2 D1 D0

Clock
Load

Clear

190

3.2.4 Example : Data Path

191

3.2.4 Example : Data Path

Entity

• Entity DataPath is

• port (A, B in Std_logic_vector(3 downto 0);

• loadA, loadB : in std_logic;

• CK, reset1 ,sw : in std_logic;

• Sum : out std_logic_vector(3 downto 0);

• Cout : out std_logic);

• end Entity DataPath;

• Architecture struture1 of DataPath is

• Signal NotB : std_logic_vector(3 downto 0);

• Signal OutMuxB : std_logic_vector(3 downto 0);

• Signal InternalA, InternalB : std_logic_vector(3
downto 0);

• Signal inC: std_logic;

• Begin

• …

• End architecture structure1;

192

3.2.4 Example : Control Path

• Control Signals in Data Path

• Sw Control the mode

• Reset, reset the output active low

• CK, clock synchronize the calculation

of Sum and sub

• Load A, Load B: allow the input of

register to be loaded into the register.

• Done : High when the calculation is

done, low when the reset is activated.

193

3.2.4 Example : Control Path

194

3.2.4 Example : Final Design

Controller

A

Data Path

Sum

B SW

Cout

enter reset

clk

done

reset1

loadA

loadB

4 4

195

3.2.4 Hardware

Implementation

• Wiring

• Pin assignment

• Programming

• Testing

196

3.2.5 Shift Register

• A shift Register is an n-bit register

with a provision for shifting its stored

data by one bit position at each tick of

the clock. Following is a 4-bit register:

Q3 Q2 Q1 Q0

D3 D2 D1 D0

Clock
Load

Clear

Q

Clk Clr

D

Q

Clk Clr

D

Q

Clk Clr

D

Q

Clk Clr

D

MUX2 to1

I0 I1

S0
MUX2 to1

I0 I1

S0
MUX2 to1

I0 I1

S0
MUX2 to1

I0 I1

S0

clock

clear

Load D3 D2 D1
D0

Q3 Q2 Q1 Q0

197

3.2.5 Shift Register (cont‘d)

• Multi-mode 4 bit shift register

Q3 Q2 Q1 Q0

P3 P2 P1 P0

Clock mode (S1S0)
Clear

L.S.I

2

R.S.I

S1 S0 Mode

0 0 Hold

0 1 Load

1 0 Shift left

1 1 shift right

Q

Clk Clr

D

Q

Clk Clr

D

Q

Clk Clr

D

Q

Clk Clr

D

MUX4 to1

I0 I1 I2 I3

S
MUX4 to1

I0 I1 I2 I3

S
MUX4 to1

I0 I1 I2 I3

S
MUX4 to1

I0 I1 I2 I3

S

clock

clear

Mode

Q3 Q2 Q1 Q0

2

P3 P2
P1

P0L.S.I R.S.I

198

3.2.5 Shift Register in VHDL
• Entity Vshftreg is

• Port(

• Clk, clr,rin,lin : in std_logic;

• S: in std_logic_vector (2 downto 0); --function select

• D: in std_logic_vector(7 downto 0); --data in

• Q: out std_logic_vector (7 downto 0) –data out

•);

• End entity;

• Architecture vshftreg_arch of vshreg is

• Signal Iq: std_logic_vector (7 downto 0);

• Begin

• Process(clk,clr,iq)

• begin

• If(clr=‗1‘) then Iq <= (others=>‘0‘);--asynchronous clear

• Elsif (clk‘event and clk=‗1‘) then

• Case conv_integer(s) is

• When 0 => null; --hold

• When 1=> iq <=D; --load

• When 2 =>iq <=rin & iq(7 downto 1); --shift right

• When 3 => iq <= iq(6 downto 0) & lin; --shift left

• When 4=> iq <=iq(0) & iq(7 downto 1); --circular right

• When 5 => iq <= iq(6 downto 0) & Iq(7); --circular left

• When 6 => iq <=iq(7) & iq(7 downto 1); --shift arith right

• When 7 => iq <=iq(6 downto 0) & ‗0‘; --shift arith left

• When others => null;

• End case;

• End if;

• Q<=iq;

• End process;

• End vshftreg_arch;

199

3.2.6 Counters

• Counter is generally used for any a

clocked sequential circuit whose state

diagram contains a single cycle.

• The modulus of a counter is the number

of states in the cycle

• Counter with m states is called a modulo-

m counter of a divide-by-m counter

S1
S2

S3

S4
S5

Sm

Q Q'

CLK D

Q Q'

T

Use D flip flop to

construct a T Flip flop

200

3.2.6 Counters (cont‘d)

• Ripple counters : can be constructed

with just n flips –flops and no other

components—drawback slow

• Synchronous counters: connect the

inputs to the same common Clk signal.

• Clock period should > propagation

delay.—improvement: synch parallel

counter

Q Q'

T

Q0

Q Q'

T

Q1

Q Q'

T

Q2

Q Q'

T

Q3

Clk

Q Q'

EN T

Q0

Q Q'

T

Q1

Q Q'

T

Q2

Q Q'

T

Q3

Clk

CNTEN

201

3.2.6 Counters (cont‘d)

• LFSR: linear Feedback shift register

counters.

• Many shift register counters have far less

than the maximum of 2n normal states (n-

bit).

• LFSR can have 2n –1 states.

• LFSR is called maximum-length

sequence generator.

• Based on finite field theory Evariste

Galois (1811-1832)

202

3.2.7 Buses

• Bus is a collection of two or more

related signals lines. They are used to

move data around within a system and

among systems.

• Bus are drawn with a double or heavy line

• A slash and a number may indicate how

many individual signal lines are contained

in a bus

• Size may be denoted in the bus name (e.g.

inbus[31..0].

• Why we need a bus?

A

B C A B C

203

3.2.7 Buses (cont‘d)

• Direct connection

• Advantages:

• High bandwidth

• No sharing

required

• Disadvantages:

• Number of

wires increases

rapidly as each

new system is

added

• Bus connection

• Advantages:

• Less wiring

• Easy & cheap to
add a new
system

• Disadvantages:

• Bus becomes a
bottle neck

• Need control
circuitry to
prevent bus
contention

204

3.2.8 Three State Buffers

• Three state buffer or three state driver.

• Three states 0, 1 or Hi-Z

• Various three-state buffers

• A) non-inverting, active high enable

• B) non inverting, active-low enable

• C) inverting, active-high enable

• D) inverting, active-low enable

Bi-directional transceivers

A B

DIR

direction mode

L B to A

H A to B

205

3.2.9 RAM

• RAM: random access memories,

which means that the time it takes to

read or write a bit of memory is

independent of the bits location in the

RAM.

• SRAM (static RAM): once a word is

written at a location, it remains stored

as long as power is applied to the chip.

Unless what ?

• DRAM (dynamic RAM): the data

stored at each location must be

refreshed periodically by reading it

and then writing it back again. Why ?

206

3.2.9 RAM (cont‘d) : a

Simplified Block Diagram of

RAM

Memory Array

d

e

c

o

d

e

r

t ransceiver

a

d

d

r

e

s

s

207

3.3 Impediments to

Synchronous Design

• Synchronous approach is the most
straightforward and reliable method of
digital system design, however…

• Synchronous systems using edge-
triggered flip-flops work properly only
if all flip-flops see the triggering clock
at the same time.

• Clock skew: the situation when the
clock signal arrives at different flip-
flops at different times

• Caused by unequal clock propagation
times

• Clock skew may cause flip-flops to load
transient input signals.

208

3.3.1 Clock Skew : Example

of Clock Skew

IN

Clock

QD D Q

delay

ClockD

Clock

IN

Q1

ClockD

Q2

209

3.3.1 Clock Skew (cont‘d)

• Clock skew are caused by

• Buffering method

• DC and AC loading

• Signals on PCB are auto routed by CAD

• Some wire maybe slower than other

• To control this problem, many high

performance systems and VLSI chips

use a two-phase latch design

Clock
Clock

Clock1

Clock2

Clock

Clock1

Clock2

Clock3

210

3.3.1 Two Phase Clocking

• Popular in custom CMOS ICs

• Standard scheme at IBM

• Advantages:

• Simple memory elements

• Essential hazards avoided

• Clock skew problems avoided

• Disadvantages

• Two separate clock signals are required

• Non-overlapping condition must be
guaranteed to ensure correct operation

Comb.

Logic

Memory Comb.

Logic
Memory

I

N

P

U

T

o

u

t

p

u

tClock1 Clock2

Clock1

Clock2

211

3.3.2 Gating the Clock

• If CLKEN is a state machine output or

other signal produced by a register

clocked by clock, the CLKEN changes

some time after clock has already gone

high. This produces glitches and false

clocking of the registers controlled by

GCLK

• AND gate delays gives GCLK excessive

clock skew, which cause problems.

Clock

GCLK

Clock

CLKEN
GCLK

CLKEN

212

3.3.2 Gating the Clock

(Cont‘d)

• An acceptable way to gate the clock

Clock

Before: GCLK

Clock

CLKEN
GCLK

CLKEN

GClk

CLKEN

213

3.3.3 Asynchronous Input

• There are always asynchronous inputs

• Key input (very low frequency)

• Interrupts

• Status flags

• Solution synchronizer:

Clock

Asyncin

Synchronous

System

Asyncin

Clock

D Q

Syncin

214

3.3.3 Asynchronous Input

(cont‘d)

• It is essential for asynchronous inputs

to be synchronized at only one place

Clock

Asyncin

Synchronous

System

Clock

D Q

Syncin1

Asyncin

D Q

Syncin2

215

3.4 Variable Entered Maps

(VEM)

• Regular K-maps

entries

• 1

• 0

• Don‘t care

• VEM entries

• 1

• 0

• Don‘t care

• Boolean variables

• expressions

• Add the power to K-map method

• Reduce the work to plot and read maps

• A technique to reduce the map size.

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0

1 1 1

0 1

0 0 c'

1 1

A
B

00 01 11 10

0 0 1 1

1 0 1 0

AB
C

A B C F F

0 0 0 0 0

0 0 1 0 0

0 1 0 1 c'

0 1 1 1 c

1 0 0 1 c'

1 0 1 0 0

1 1 0 c'o

1 1 1 co

216

3.4.1 Variable Entered Maps

(cont‘d)

• VEM are most effective when a

function depends strongly on <= 4

inputs and depends only weakly on the

remaining inputs.

• Map Entered variable (MEV) : a

variable that appears in a box in a

VEM

A B C F

0 0 0 f0

0 0 1 f1

0 1 0 f2

0 1 1 f3

1 0 0 f4

1 0 1 f5

1 1 0 f6

1 1 1 f7

0 1

0
c'f0
+cf1

c'f4+
cf5

1
c'f2
+cf3

c'f6+
cf7

A
B00 01 11 10

0 f0 f2 f6 f4

1 f1 f3 f7 f5

AB
C

A B C F

0 0
c'f0+cf1

0 0

0 1
c'f2+cf3

0 1

1 0
c'f4+cf5

1 0

1 1
c'f6+cf7

1 1

217

3.4.2 Plotting the Map

• How to plot a VEM from a truth table

• Select the MEV

• Partition the truth table so that the non-

MEVs have the same values in each

partition

0 1

0 c 1

1 c' 0

B
A B C F1 F2 F3 F4

0 0 0 0 1 0 1

0 0 1 1 0 0 1

0 1 0 1 0 1 0

0 1 1 0 1 1 1

1 0 0 1 0 0 1

1 0 1 1 0 1 0

1 1 0 0 1 1 0

1 1 1 0 1 0

A 0 1

0 c' 0

1 c 1

B
A

0 1

0 0 c

1 1 c'

B
A 0 1

0 1 c'

1 c c

B
A

218

3.4.2 Plotting the Map(cont‘d)

• How to plot a VEM from an equation

• Rearrange the function into S.O.P form

• Identify the most dependant variable

• Factor out the minterms in the identified

variables

• Draw out an map

• Fill in the VEM

• Example :

219

3.4.3 Reading Theory

• Step1: first image that all 1 entries in the map

are replaced by the map entered variables

Ored with its complement. 1=D+D‘

• First loop all single MEV entries that will not loop

with another identical MEV in an adjacent cell or

with a 1 or don‘t care (island).

• Loop all MEV‘s that will loop into duals only with

another identical MEV in an adjacent cell

• Loop all MEV‘s that will loop into a dual only

with a 1.

• Loop all MEV‘s that will loop into a dual only

with a don‘t care.

• Any MEV that will loop two ways with another

identical MEV, 1 or don‘t care but won‘t loop into

a quad, leave until later

• Continue looping in similar fasion for quads and

groups of eight until every MEV has been looped

at least once

220

3.4.3 Reading Theory (cont‘d)

• Step2: once all single MEV entries
have been covered, transform the map
according to the following
transformations:

• A) Replace the MEV and MEV‘ with 0.

• B) 0 to 0, don‘t care to don‘t care

• C) 1 : two possible transformations:

• 1 if not completed covered

• Don‘t care if completed covered, I.e. looped
with both the MEV and MEV‘

• Step3: OR together the terms from
steps 1 and 2

) 0

) () ()

1 cov
cov
cov

cov

D MEV and MEV

E MEV MEV and MEV MEV

if not ered at all or if
just the is ered
if completed ered or
if just thenecessaryterm
is ered

 

   


 




221

3.4.3 Reading Theory (cont‘d)

D

D'

0

0

0 0

D 1

D'

0

0

D

D'

0

0

0 D+D'

D'

0 1

0

1 D+D'

D'

A)

B)

C)
D 1

0

0 1

0

D)

E)

222

3.4.3 Reading Theory

(cont‘d): example1

0 1

0

1

C 0

1 C

given

step1

step2

A
B

0 1

0

1

C 0

C+C' C

A
B

0 1

0

1

C 0

C+C' C

A
B

0 1

0

1

0 0

1 0

A
B

F AC BC AB  

223

3.4.3 Reading Theory

(cont‘d): example2

A B C D F1 F2

0 0 0 0 0

0 0 1 1 0

0 0 1 0 1 1

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 1 1 1

0 1 1 0 1

0 1 1 1 0 1

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 1

1 0 1 1 1 0

1 1 0 0 0 0

1 1 0 1 1

1 1 1 0 0 1

1 1 1 1 0

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

1

2

F BCD AD ABC

F ABD CD AC

  

  

224

3.5 Design Steps for Digital

System Design

1. Define the system specifications

2. Develop a rough design for the

system

3. Develop a detailed design for the

data path

4. Develop a detailed specification for

the controller

5. Complete the design of the controller

6. Finalize the design

7. Simulation and hardware

implementation

225

3.5.1 Step1:Define the System

Specifications

• Define the purpose of the system

• Input, output

• System-level

• Define the system‘s operation

• Algorithms

• flowchart

• Define the operational constrains

• Cost

• Speed

• Size

• Power requirement

• Reliability

• Upgrade ability

• Marketing plans

• Other considerations

226

3.5.2 Step2 : Develop a Rough

Design for the System

• Objectives

• Define the control relationships within

system

• Define basic sequential behavior

• Identify functional units in data path

• Choose signal names

• Graphical illustrations

• Block diagram

• flowchart

227

3.5.3 Step3: Develop a

Detailed Design for the

Data Path

• Objectives

• Fully define the data path

• Documentation aids

• Detailed timing diagram

• Detailed flowchart

• Detailed functional partial partition

228

3.5.4 Step4 : Develop a

Detailed Specification for the

Controller

• Objectives:

• Fully specify the controller behavior

• The operation of the system controller

is completed defined by the detailed

flowchart

• The controller is a synchronous

sequential machine

• It should be expressed as a state

diagram.

• Translate the flow diagram to a state

diagram

229

3.5.4 Step4 : Rules for

Converting Flow Chart to

State Diagram

• Rule1 : Action block in flow

diagram state in the state diagram

action1

action2

condition

Yes

No action1

action2

condition

condition

230

Example

231

3.5.4 Step4 : Rules for

Converting Flow Chart to

State Diagram(cont‘d)

• Rule2: the branching conditions for a

state are derived by tracing through all

possible decision paths from the given

action block to all possible other

action blocks

action1

action2

condition

Yes

No action1

action2

condition

condition

232

Example

233

3.5.4 Step4 : Rules for

Converting Flow Chart to

State Diagram(cont‘d)

• Rule3: Avoid making branching

decisions on more than one

asynchronous variable at a time

A

Data

Skip

term

B C

N

N

N

Y

Y

Y

A

B C

Data'+skip

Data.Skip'.term'

Data.Skip'.term

234

3.5.4 Step4 : Rules for

Converting Flow Chart to

State Diagram(cont‘d)

• Rule3: Avoid making branching

decisions on more than one

asynchronous variable at a time

A

Data

Skip

term

B C

N

N

N

Y

Y

D

B C

term'term

D

A

Data'+skip

Data.skip'

235

3.5.5 Step5: Complete the

Design of the Controller

• Complications:

• Short/brief input pulses

• Asynchronous inputs

• Avoid glitches in the outputs

• Debug and testability features

• Design steps:

• Select a controller architecture

• Deal with synchronous problems

• Select a clock frequency

• Find a suitable state assignment

• Use a state map

• Implement the next state maps

• Plot next state maps

• Design the output decoder

• Plot output maps (if necessary)

• Produce an output list

236

3.5.6 Step6 : Finalize the Design

Controller Data Path Interface

controller

data in

internal
control
signal

data path

data out

external
control
signal

internal
status
signal

external
status
signal

237

3.5.7 Step7: Simulation and

Hardware Implementation

238

3.6 An Example: pop machine

controller

• Requirement:

• Pop machine capable of automatically

dispensing soda pop at 75 cents per

can and make proper change for coin

sequences comprising nickels, dimes,

quarters. The new machine use

existing inventory including coin

receiver, coin changer, and pop drop

mechanism. These three given

subsystems are to be controlled by a

newly designed digital controller.

239

3.6.1 Specs
• Constrains:

• Must operate out of doors

• Must operate in an electrically noisy
environment

• Mean time between failures > 2 months

• Hardware constraints : coin receiver, coin
changer and pop-drop mechanism have
already been chosen.

pop-drop

pop
ready

drop

changer

change
ready

eject

receiver

manual
coin

release

coin drop

coin present

quarter

nickle

dime

clear (L)

240

3.6.1 Specs (cont‘d)

• Time Specs for the coin receiver

quarter

nickle

dime

coin present

• Time Specs for the coin changer

eject

change ready

241

3.6.2 Roughly Define System

Operation

pop-drop

Coin
Changer

Coin
Receiver

System
Controller

Start

Coin

received

ACC

ACC >= 75

ACC= 75

Drop POP
clear ACC

return nickle and

reduce ACC

N

N

NY

Y

Y

242

3.6.2 Roughly Block Diagram

for the Data Path

Combinational
logic

Adder

Coin receiver

Coin type

Coin value

Register

Comparator

75

A>B

A=B

A<B

243

3.6.3 Refined Data Path

Combinational
logic

Adder

Coin type

Coin value

Register

Comparator

75

A>B

A=B

A<B

Coin Receiver
Clear
Drop coin
coin Present

counter
Load
Clear
Count Down

244

3.6.4 Develop a detailed

specification for the controller

Start

Coin

present

a

coin
present

b

c

ACC<75

ACC>75

d f

 pop drop
ready

e

Clear ACC, drop pop

change
ready

N

Y

Y

N

Y

N

N

N

N

f
dec ACC by nickle

245

3.6.5 Complete the Design of

Controller

a

b

c

d

e

f

g

coin present

coin present

coin present

coin present
ACC < 75

ACC > 75ACC = 75

change ready

change ready

pop drop ready

pop drop ready

246

3.6.6 Finalize the Design:

Controller Data Path Interface

Data Path
Control

path

<75

=75

>75

clear ACC

DEC ACC

coin
receiver

coin
changer

pop drop

drop_pop

drop_ready

change_ready

return nickle

clear

coin present

drop coin

coin signal

coin present

247

3.6.7 VHDL Implementation

248

3.6.7 Digital Design

a

b

c

d

e

f

g

coin present

coin present

coin present

coin present
ACC < 75

ACC > 75ACC = 75

change ready

change ready

pop drop ready

pop drop ready

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

249

3.6.7 Digital Design

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

250

