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III. Digital 

Design & 

Applications
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3. Digital Design and 

Applications

• 3.1 Introduction to Digital System 

Design

• 3.2 Register-Transfer Level

• 3.3 Impediments to Synchronous 

Design

• 3.4 Variable Entered Maps

• 3.5 Design steps for a digital 

system

• 3.6 Digital Design Example
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3.1.1 Problems for classical 

Sequential Design

• Classical sequential circuit design 

techniques could, in theory, be used in 

arbitrarily complex design problems.

• In practice, however, classical 

techniques are ineffective for all but 

the simplest problems.

• Reason: 

• The complexity of the design problem 

overwhelms the human designer‘s ability 

to find a correct solution

• Using classical techniques leads to 

designs that are 

• Hard to understand, hard to modify, and hard 

to test
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3.1.2 Software solutions to 

Digital System Design

• Advantages:

• No need to design 

hardware

• Software is relatively 

easy to 

change/customize

• Complex features can 

be readily provided in 

software

• Can test software 

designs using 

emulators.

• Disadvantages

• Microprocessors can be 
overly complicated for 
many controller 
problems

• Custom hardware can 
provide better 
performance than 
general-purpose 
hardware

• Custom techniques are 
still required in custom 
or semi custom 
integrated circuits

• Custom designs can be 
protected using patent 
or IC mask laws

•Many digital design problems are entirely 

solvable using custom software and standard 

microprocessor: examples ?
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3.1.3 Basic Strategies in 

Digital System Design
• Top-down design

• Manage design complexity.

• Postpone commitment to any particular 
hardware

• Use iterative refinement to gradually 
converge on a natural solution

• Decompose a module into loosely 
interacting sub modules

• Design using high-level building blocks 

• Conservative/safe design techniques

• Use synchronous hardware wherever 
possible

• Convert asynchronous inputs to 
synchronous inputs

• Use a robust system-wide clocking 
strategy

• Make design  static if possible(ie. Correct 
operation is independent of clock speed)
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3.1.3 Basic Strategies in 

Digital System Design 

(cont‘d)

• Conservative/safe design techniques

• Provide a single stepping mode

• Make design testable by construction

• Avoid obscure design tricks

• Document the design thoroughly

• Requirement, (user-oriented), 

specification (designer-oriented)

• Reasons for designs decisions

• List relevant standards

• Propose test plans

• Develop maintenance procedures

• Consider manufacturability issues
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3.1.4 Signals at External 

Interface

• System level control signals:

• Highest level commands

• External user is shielded form internal details

• System level status signals

• Simplified high-level status information is 
provided to the external user

• Data in

• Analog signals are typical converted to digital 
processing

• Data out

• Analog signals may need to be reconstructed from 
their internal digital representation

Digital
system

control
 signal

status
signal

data in

data out
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3.1.5 Highest Level of System 

Architecture

• Control path

• Circuit that control 

algorithm by which 

operators are 

applied to the data

• State control and 

data operation 

sequencing are 

emphasized

• Typical control 

units:

• Registers

• Next state logic

• Output logic

• Control+status line

• Data path

• Circuits that 

directly store and 

transform the data

• Bit parallelism and 

regular structure 

are emphasized

• Typical data path 

elements:

• Registers

• Multiplexes

• Shift/adders/ALUs

• Counters

• buses
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3.1.5 Highest Level of System 

Architecture (cont‘d)

controller

data in

internal
control
signal

data path

data out

external
control
signal

internal
status
signal

external
status
signal
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3.2 Register Transfer Level

• A convenient conceptual level 
intermediate between the system level 
and the gate level

• RTL assumes a set of hardware constructs 
are defined in FPGA hardware and library 
elements

• HDL code is mapped to these constructs

• Describe the operation of synchronous 
system

• Combine the control-flow state machine 
with means for defining and operating 
multi-bit registers

• Typical RTL constructs:

• Combinational logic

• Arbitrary functions (random logic, 
ROMs, PALs, PLAs)

• Multiplexers

• Demultiplexers/decoders

• Comparators

• Arithmetic./logic circuits (ALUs,     
adders, subtractors) 
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3.2 Register Transfer Level 

(cont‘d)

• Sequential Logic

• Latches, flip-flops

• Registers, shift registers

• Counters, LFSRs

• RAMs

• Interconnect:

• Buses

• Wires

• Buffers

• Tri-state able buffers

• Bi-directional transceivers
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3.2.1 Multiplexers (Mux)

• Multiplexer is a digital switch

• It connects data from one of n sources to 

its output.

• A logic equation:

• Summation symbol represents a logical 

sum of product terms

• iY is a particular output bit (1 <= i< =b)

• iDj is input bit I of source j (0<=j<=n-1)

• Mj represents minterm j of the s select 

inputs

• ? The relationship between S and n

1

0

n

j j

j

iY EN M iD




  

data out

Enable

select
s

b

b

b

n data
source

EN

SEL

D0

D1

Dn-1

b

Multiplexer
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3.2.1 Multiplexers (cont‘d)

• Example 4 to 1 MUX

• How to implement?

4 X 1

MUX

Io

S1

I1

I2

I3

EN

S0

Y EN S1 S0 Y

1 x x 0

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3
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3.2.1 Multiplexers  in VHDL 

(cont‘d)

• Mutiplexers are very easy to describe in 

VHDL.

• Example for 4 in 1 bit MUX:

• Entity mux4in1b is

• Port ( S : in std_logic_vector (1 downto 0);

• I0, I1, I2, I3 : in std_logic;

• Y: out std_logic

• );

• End mux4in1b;

• Architecture mux4_1b of mux4in1b is

• Begin 

• with S select Y<=

• I0 when ―00‖,

• I1 when ―01‖,

• I2 when ―10‖,

• I3 when ―11‖,

• End mux4in1b;



177

3.2.1 Expanding Multiplexers 

• Expand 4 input 1 bit output multiplexer to 4 
input 8 bit output multiplexer

• Entity mux4in8b is

• Port ( S : in std_logic_vector (1 downto 0);

• I0, I1, I2, I3 : in std_logic_vector (1 to 8) ;

• Y: out std_logic_vector (1 to 8)

• );

• End mux4in8b;

• Architecture mux4in_8b of mux4in8b is

• Begin 

• with S select Y<=

• I0 when ―00‖,

• I1 when ―01‖,

• I2 when ―10‖,

• I3 when ―11‖,

• End mux4in_8b;
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3.2.1 Expanding Multiplexers 

(cont‘d)

• Expand 4 input 1 bit output 

multiplexer to 8 input 1 bit output 

multiplexer

• How to implement it in VHDL?

4 X 1

MUX

Io

S1

I1

I2

I3

EN

S0

Y

4 X 1

MUX

Io

S1

I1

I2

I3

EN

S0

Y
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3.2.2 DeMultiplexers

• Used to direct data to one of two or 

more possible destinations

data in

Enable

select
s b

b

b

 data out

EN

SEL Y0

Y1

Yn-1

b

DeMultiplexer

DE

MUX

Y0

S1

Y1

Y2

Y3

E

S0

S1 S0 Y0 Y1 Y2 Y3

0 0 E 1 1 1

0 1 1 E 1 1

1 0 1 1 E 1

1 1 1 1 1 E
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3.2.2 DeMultiplexers in 

VHDL

• Example for demux:

• Entity Demux is

• Port ( S : in std_logic_vector (1 downto 0);

• E : in std_logic;

• Y0, Y1, Y2, Y3: out std_logic

• );

• End Demux;

• Architecture Demux of demux is

• Begin 

case S is

When ―00‖ =>

Y0<=E ;

When ―01‖ =>

Y1<=E ;

When ―10‖ =>

Y2<=E ;

When ―11‖ =>

Y3<=E ;

End case ;

• End demux;
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3.2.3 Comparators

• Comparing two binary words for 

equality

A             B
A=B?

4 4

1

A0 B0 A1 B1 A2 B2 A3 B3

A=B

PI

CI     module      Co

Po

PI

CI     module      Co

Po

PI

CI     module      Co

Po

PI0 PI1 PIn-1

Po0 Po1 Pon-1

C0 C1 C2
Cn-1

Cn

cascading

input

cascading

output
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3.2.3 Comparators in VHDL

• Example of four bit  equality comparator

• entity eqcomp4 is

• port ( A0, B0, A1, B1, A2, B2, A3, B3 
: in Std_logic; equals: out std_logic);  

• end eqcomp4;

• architecture structure1 of eqcomp4 is

• Signal O0, O1, O2,O3 : Std_logic;

• begin

• O0 <= A0 xor B0;

• O1 <= A1 xor B1;

• O2 <= A2 xor B2;

• O3 <= A3 xor B3;

• Equals <= O0 and O1 and O2 and O3; 

• end structure1;

• How to implement cascade comparator in VHDL 
?
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3.2.4 Binary Adders

• Half adders: adds two 1 bit operands X and 

Y, producing a 2-bit sum. The lower-order 

bit of the sum may be named HS (half sum), 

and the higher-order bit may be named CO 

(carry out)

• HS= X xor Y=XY‘+X‘Y

• CO=XY

• Full adders: to add operands with more than 

one bit, we must provide for carries between 

bit positions. The building block for this 

operation called full adder.

• Besides the added-bit inputs X and Y, a full 

adder has a carry-bit input, Cin.

• Out put is named S (sum) and Cout (carry 

out)

• S= X xor Y xor Cin

• Cout=XY+XCin+YCin
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3.2.4 Binary Adders (cont‘d)

(a) One possible circuit that performs the 

full adder equations 

(b) The corresponding logic symbol

(c ) symbol for cascaded full adders

X            Y
Cout              Cin

S

X

Y

Cin

S

Cout

full adder

Y S

Cout

(a)

(b)

(c)

X

Cin

1 1

11

1
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• Entity for a full adder

• entity adder is

• port ( X, Y, Cin :  in Std_logic;

• S, Cout : out Std_logic);  

• end adder;

• Ripple adder : two binary words, each 

with n bits, can be added using a ripple 

adder– cascade of n full-adder stages, 

each of which handles one bit.

• Ripple adder is slow, why ?

• Some other adders ?

X            Y
Cout              Cin

S

S3

C4

X3 Y3

X            Y
Cout              Cin

S

S2

C3

X2 Y2

X            Y
Cout              Cin

S

C2

X1 Y1

X            Y
Cout              Cin

S

C1

X0 Y0

C0

S1 S0

3.2.4 Binary Adders (cont‘d)
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3.2.4 Binary Adders in VHDL
• entity rippleadder is

• port ( X, Y:  in Std_logic_vector(0 to 3);

• S : out std_logic_vector( 0 to 3);

• Cout : out Std_logic);  

• end rippleadder;

Architecture structure1 of rippleadder is

component adder –pre-defined part type

port ( X, Y, Cin :  in Std_logic;

• S, Cout : out Std_logic);  

End component;

Signal Cout0cin1, cout1cin2, cout2cin3 : in std_logic;

Begin

adder_0: adder port map (X=>X(0), Y=>Y(0),Cin 
=>low, S=> s(0), Cout => Cout0cin1);

adder_1: adder port map (X=>X(1), Y=>Y(1),Cin 
=>Cout0cin1, S=> s(1), Cout => Cout1cin2);

adder_1: adder port map (X=>X(0), Y=>Y(0),Cin 
=>Cout1cin2, S=> s(2), Cout => Cout2cin3);

adder_1: adder port map (X=>X(0), Y=>Y(0),Cin 
=>Cout2cin3, S=> s(3), Cout => Cout);

End structure1 ;

X            Y
Cout              Cin

S

S3

C4

X3 Y3

X            Y
Cout              Cin

S

S2

C3

X2 Y2

X            Y
Cout              Cin

S

C2

X1 Y1

X            Y
Cout              Cin

S

C1

X0 Y0

C0

S1 S0
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3.2.4 A Design Example: 

Recursive Adder/Subtractor 

• Objective: Implement an adder and

subtractor using VHDL.

• Design steps

• Define Specifications

• Data Path Design

• Control Path Design

• Simulation

• Hardware Implementation

• Testing
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3.2.4 Define Specifications

• 4-bit Switch Input  A

• 4-bit Switch Input B

• 1 bit switch for Opcode.

• LED output 4 LED for Sum, one for

• Cout, one done signal

• Restricted building blocks:

• An inverter, 2 2N-N mux, three registers 

and an adderN.

A            B

Sum       Cout

OPcode

4 4

4

Done
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3.2.4 Define Specifications

• Opcode 0, A+B 

• example 0101+0111

• Opcode 1, A-B=A+NotB+1

• Example 1100-0011=?

• Adder implementation

• Ripple adder

• fast adder

• Register ? Synchronize the add and 

subtract procedure

Q3  Q2  Q1  Q0

D3  D2  D1  D0

Clock
Load

Clear
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3.2.4 Example : Data Path
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3.2.4 Example : Data Path 

Entity

• Entity DataPath is

• port ( A, B in Std_logic_vector(3 downto 0);

• loadA, loadB : in std_logic;

• CK,  reset1 ,sw : in std_logic;

• Sum : out std_logic_vector(3 downto 0);

• Cout : out std_logic );  

• end Entity DataPath;

• Architecture struture1 of DataPath is

• Signal NotB : std_logic_vector(3 downto 0);

• Signal OutMuxB : std_logic_vector(3 downto 0);

• Signal InternalA, InternalB : std_logic_vector(3 
downto 0);

• Signal inC: std_logic;

• Begin

• …

• End architecture structure1;
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3.2.4 Example : Control  Path

• Control Signals in Data Path

• Sw Control the mode

• Reset, reset the output active low

• CK, clock synchronize the calculation 

of Sum and sub

• Load A, Load B: allow the input of 

register to be loaded into the register.

• Done : High when the calculation is 

done, low when the reset is activated.
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3.2.4 Example : Control Path
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3.2.4 Example : Final Design

Controller

A

Data Path

Sum

B SW

Cout

enter reset

clk

done

reset1

loadA

loadB

4 4
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3.2.4 Hardware 

Implementation 

• Wiring

• Pin assignment

• Programming

• Testing 
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3.2.5 Shift Register

• A shift Register is an n-bit register 

with a provision for shifting its stored 

data by one bit position at each tick of 

the clock. Following is a 4-bit register:

Q3  Q2  Q1  Q0

D3  D2  D1  D0

Clock
Load

Clear

Q

Clk                 Clr

D

Q

Clk                 Clr

D

Q

Clk                 Clr

D

Q

Clk                 Clr

D

MUX2 to1

I0              I1

S0
MUX2 to1

I0              I1

S0
MUX2 to1

I0              I1

S0
MUX2 to1

I0              I1

S0

clock

clear

Load D3 D2 D1
D0

Q3 Q2 Q1 Q0
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3.2.5 Shift Register (cont‘d)

• Multi-mode 4 bit shift register

Q3  Q2  Q1  Q0

P3  P2  P1  P0

Clock mode (S1S0)
Clear

L.S.I

2

R.S.I

S1 S0 Mode

0 0 Hold

0 1 Load

1 0 Shift left

1 1 shift right

Q

Clk                 Clr

D

Q

Clk                 Clr

D

Q

Clk                 Clr

D

Q

Clk                 Clr

D

MUX4 to1

I0   I1   I2   I3

S
MUX4 to1

I0   I1   I2   I3

S
MUX4 to1

I0   I1   I2   I3

S
MUX4 to1

I0   I1   I2   I3

S

clock

clear

Mode

Q3 Q2 Q1 Q0

2

P3 P2
P1

P0L.S.I R.S.I
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3.2.5 Shift Register in VHDL
• Entity Vshftreg is

• Port(

• Clk, clr,rin,lin : in std_logic;

• S: in std_logic_vector (2 downto 0); --function select

• D: in std_logic_vector(7 downto 0); --data in

• Q: out std_logic_vector (7 downto 0) –data out

• );

• End entity;

• Architecture vshftreg_arch of vshreg is

• Signal Iq: std_logic_vector ( 7 downto 0);

• Begin

• Process(clk,clr,iq)

• begin

• If(clr=‗1‘) then Iq <= (others=>‘0‘);--asynchronous clear

• Elsif (clk‘event and clk=‗1‘) then

• Case conv_integer(s) is

• When 0 => null; --hold

• When 1=> iq <=D; --load

• When 2 =>iq <=rin & iq( 7 downto 1); --shift right

• When 3 => iq <= iq( 6 downto 0) & lin; --shift left

• When 4=>  iq <=iq(0) & iq( 7 downto 1); --circular  right

• When 5 => iq <= iq( 6 downto 0) & Iq(7); --circular left

• When 6 => iq <=iq(7) & iq(7 downto 1); --shift arith right

• When 7 => iq <=iq( 6 downto 0) & ‗0‘; --shift arith left

• When others => null;

• End case;

• End if;

• Q<=iq;

• End process;

• End vshftreg_arch;
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3.2.6 Counters

• Counter is generally used for any a 

clocked sequential circuit whose state 

diagram contains a single cycle. 

• The modulus of a counter is the number 

of states in the cycle

• Counter with m states is called a modulo-

m counter of a divide-by-m counter

S1
S2

S3

S4
S5

Sm

Q             Q'

CLK         D

Q Q'

T

Use D flip flop to 

construct  a T Flip flop



200

3.2.6 Counters (cont‘d)

• Ripple counters :  can be constructed 

with just n flips –flops and no other 

components—drawback slow

• Synchronous counters: connect the 

inputs to the same common Clk signal.

• Clock period should > propagation 

delay.—improvement: synch parallel 

counter

Q             Q'

T

Q0

Q             Q'

T

Q1

Q             Q'

T

Q2

Q             Q'

T

Q3

Clk

Q             Q'

EN             T

Q0

Q             Q'

T

Q1

Q             Q'

T

Q2

Q             Q'

T

Q3

Clk

CNTEN
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3.2.6 Counters (cont‘d)

• LFSR: linear Feedback shift register 

counters.

• Many shift register counters have far less 

than the maximum of 2n normal states ( n-

bit).  

• LFSR can have 2n –1 states. 

• LFSR is called maximum-length 

sequence generator.

• Based on finite field theory Evariste 

Galois (1811-1832)
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3.2.7 Buses

• Bus is a collection of two or more 

related signals lines.  They are used to 

move data around within a system and 

among systems. 

• Bus are drawn with a double or heavy line

• A slash and a number may indicate how 

many individual signal lines are contained 

in a bus

• Size may be denoted in the bus name (e.g. 

inbus[31..0]. 

• Why we need a bus?

A

B C A B C
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3.2.7 Buses (cont‘d)

• Direct connection

• Advantages:

• High bandwidth

• No sharing 

required

• Disadvantages:

• Number of 

wires increases 

rapidly as each 

new system is 

added

• Bus connection

• Advantages:

• Less wiring

• Easy & cheap to 
add a new 
system

• Disadvantages:

• Bus becomes a 
bottle neck

• Need control 
circuitry to 
prevent bus 
contention



204

3.2.8 Three State Buffers

• Three state buffer or three state driver.

• Three states 0, 1 or Hi-Z

• Various three-state buffers

• A) non-inverting, active high enable

• B) non inverting, active-low enable

• C) inverting, active-high enable

• D) inverting, active-low enable

Bi-directional transceivers

A B

DIR

direction mode

L B to A

H A to B
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3.2.9 RAM

• RAM: random access memories, 

which means that the time it takes to 

read or write a bit of memory is 

independent of the bits location in the 

RAM.

• SRAM (static RAM): once a word is 

written at a location, it remains stored 

as long as power is applied to the chip. 

Unless what ?

• DRAM (dynamic RAM): the data 

stored at each location must be 

refreshed periodically by reading it 

and then writing it back again. Why ?
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3.2.9 RAM (cont‘d) : a 

Simplified Block Diagram of 

RAM

Memory Array

d

e

c

o

d

e

r

t ransceiver

a

d

d

r

e

s

s
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3.3 Impediments to 

Synchronous Design

• Synchronous approach is the most 
straightforward and reliable method of 
digital system design, however…

• Synchronous systems using edge-
triggered flip-flops work properly only 
if all flip-flops see the triggering clock 
at the same time. 

• Clock skew: the situation when the 
clock signal arrives at different flip-
flops at different times

• Caused by unequal clock propagation 
times

• Clock skew may cause flip-flops to load 
transient input signals.
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3.3.1 Clock Skew : Example 

of Clock Skew

IN

Clock

QD D Q

delay

ClockD

Clock

IN

Q1

ClockD

Q2
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3.3.1 Clock Skew (cont‘d)

• Clock skew are caused by

• Buffering method

• DC and AC loading

• Signals on PCB are auto routed by CAD

• Some wire maybe slower than other

• To control this problem, many high 

performance systems and VLSI chips 

use a two-phase latch design

Clock
Clock

Clock1

Clock2

Clock

Clock1

Clock2

Clock3
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3.3.1 Two Phase Clocking

• Popular in custom CMOS ICs

• Standard scheme at IBM

• Advantages:

• Simple memory elements

• Essential hazards avoided

• Clock skew problems avoided

• Disadvantages

• Two separate clock signals are required

• Non-overlapping condition must be 
guaranteed to ensure correct operation

Comb.

Logic

Memory Comb.

Logic
Memory

I

N

P

U

T

o

u

t

p

u

tClock1 Clock2

Clock1

Clock2
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3.3.2 Gating the Clock

• If CLKEN is a state machine output or 

other signal produced by a register 

clocked by clock, the CLKEN changes 

some time after clock has already gone 

high. This produces glitches and false 

clocking of the registers controlled by 

GCLK

• AND gate delays gives GCLK excessive 

clock skew, which cause problems.

Clock

GCLK

Clock

CLKEN
GCLK

CLKEN
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3.3.2 Gating the Clock 

(Cont‘d)

• An acceptable way to gate the clock

Clock

Before: GCLK

Clock

CLKEN
GCLK

CLKEN

GClk

CLKEN
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3.3.3 Asynchronous Input

• There are always asynchronous inputs

• Key input (very low frequency)

• Interrupts

• Status flags

• Solution synchronizer:

Clock

Asyncin

Synchronous

System

Asyncin

Clock

D Q

Syncin
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3.3.3 Asynchronous Input 

(cont‘d)

• It is essential for asynchronous inputs 

to be synchronized at only one place

Clock

Asyncin

Synchronous

System

Clock

D Q

Syncin1

Asyncin

D Q

Syncin2
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3.4 Variable Entered Maps 

(VEM)

• Regular K-maps 

entries

• 1

• 0

• Don‘t care

• VEM entries

• 1

• 0

• Don‘t care

• Boolean variables

• expressions

• Add the power to K-map method

• Reduce the work to plot and read maps

• A technique to reduce the map size.

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0

1 1 1

0 1

0 0 c'

1 1

A
B

00 01 11 10

0 0 1 1

1 0 1 0

AB
C

A B C F F

0 0 0 0 0

0 0 1 0 0

0 1 0 1 c'

0 1 1 1 c

1 0 0 1 c'

1 0 1 0 0

1 1 0 c'o

1 1 1 co
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3.4.1 Variable Entered Maps 

(cont‘d)

• VEM are most effective when a 

function depends strongly on <= 4 

inputs and depends only weakly on the 

remaining inputs.

• Map Entered variable (MEV) : a 

variable that appears in a box in a 

VEM

A B C F

0 0 0 f0

0 0 1 f1

0 1 0 f2

0 1 1 f3

1 0 0 f4

1 0 1 f5

1 1 0 f6

1 1 1 f7

0 1

0
c'f0
+cf1

c'f4+
cf5

1
c'f2
+cf3

c'f6+
cf7

A
B00 01 11 10

0 f0 f2 f6 f4

1 f1 f3 f7 f5

AB
C

A B C F

0 0
c'f0+cf1

0 0

0 1
c'f2+cf3

0 1

1 0
c'f4+cf5

1 0

1 1
c'f6+cf7

1 1
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3.4.2 Plotting the Map

• How to plot a VEM from a truth table

• Select the MEV

• Partition the truth table so that the non-

MEVs have the same values in each 

partition

0 1

0 c 1

1 c' 0

B
A B C F1 F2 F3 F4

0 0 0 0 1 0 1

0 0 1 1 0 0 1

0 1 0 1 0 1 0

0 1 1 0 1 1 1

1 0 0 1 0 0 1

1 0 1 1 0 1 0

1 1 0 0 1 1 0

1 1 1 0 1 0

A 0 1

0 c' 0

1 c 1

B
A

0 1

0 0 c

1 1 c'

B
A 0 1

0 1 c'

1 c c

B
A
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3.4.2 Plotting the Map(cont‘d)

• How to plot a VEM from an equation

• Rearrange the function into S.O.P form

• Identify the most dependant variable

• Factor out the minterms in the identified 

variables

• Draw out an map

• Fill in the VEM

• Example : 
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3.4.3 Reading Theory

• Step1: first image that all 1 entries in the map 

are replaced by the map entered variables 

Ored with its complement. 1=D+D‘

• First loop all single MEV entries that will not loop 

with another identical MEV in an adjacent cell or 

with a 1 or don‘t care (island).

• Loop all MEV‘s that will loop into duals only with 

another identical MEV in an adjacent cell

• Loop all MEV‘s that will loop into a dual only 

with a 1.

• Loop all MEV‘s that will loop into a dual only 

with  a don‘t care.

• Any MEV that will loop two ways with another 

identical MEV, 1 or don‘t care but won‘t loop into 

a quad, leave until later

• Continue looping in similar fasion for quads and 

groups of eight until every MEV has been looped 

at least once
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3.4.3 Reading Theory (cont‘d)

• Step2: once all single MEV entries 
have been covered, transform the map 
according to the following 
transformations:

• A) Replace the MEV and MEV‘ with 0.

• B) 0 to 0, don‘t care to don‘t care

• C) 1 : two possible transformations:

• 1 if not completed covered

• Don‘t care if completed covered, I.e. looped 
with both the MEV and MEV‘

• Step3: OR together the terms from 
steps 1 and 2

) 0

) ( ) ( )

1 cov
cov
cov

cov

D MEV and MEV

E MEV MEV and MEV MEV

if not ered at all or if
just the is ered
if completed ered or
if just thenecessaryterm
is ered

 

   


 



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3.4.3 Reading Theory (cont‘d)

D

D'

0

0

0 0

D 1

D'

0

0

D

D'

0

0

0 D+D'

D'

0 1

0

1 D+D'

D'

A)

B)

C)
D 1

0

0 1

0

D)

E)
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3.4.3 Reading Theory 

(cont‘d): example1

0      1

0

1

C 0

1 C

given

step1

step2

A
B

0      1

0

1

C 0

C+C' C

A
B

0      1

0

1

C 0

C+C' C

A
B

0      1

0

1

0 0

1 0

A
B

F AC BC AB  
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3.4.3 Reading Theory 

(cont‘d): example2

A B C D F1 F2

0 0 0 0 0

0 0 1 1 0

0 0 1 0 1 1

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 1 1 1

0 1 1 0 1

0 1 1 1 0 1

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 1

1 0 1 1 1 0

1 1 0 0 0 0

1 1 0 1 1

1 1 1 0 0 1

1 1 1 1 0

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

1

2

F BCD AD ABC

F ABD CD AC

  

  
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3.5 Design Steps for Digital 

System Design

1. Define the system specifications

2. Develop a rough design for the 

system

3. Develop a detailed design for the 

data path

4. Develop a detailed specification for 

the controller

5. Complete the design of the controller

6. Finalize the design

7. Simulation and hardware 

implementation
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3.5.1 Step1:Define the System 

Specifications

• Define the purpose of the system

• Input, output

• System-level

• Define the system‘s operation

• Algorithms

• flowchart

• Define the operational constrains

• Cost

• Speed

• Size

• Power requirement

• Reliability

• Upgrade ability

• Marketing plans

• Other considerations
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3.5.2 Step2 : Develop a Rough 

Design for the System

• Objectives

• Define the control relationships within 

system

• Define basic sequential behavior

• Identify functional units in data path

• Choose signal names

• Graphical illustrations

• Block diagram

• flowchart
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3.5.3 Step3: Develop a 

Detailed Design for the 

Data Path

• Objectives

• Fully define the data path

• Documentation aids

• Detailed timing diagram

• Detailed flowchart

• Detailed functional partial partition
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3.5.4 Step4 : Develop a 

Detailed Specification for the 

Controller

• Objectives:

• Fully specify the controller behavior

• The operation of the system controller 

is completed defined by the detailed 

flowchart

• The controller is a synchronous 

sequential machine

• It should be expressed as a state 

diagram.

• Translate the flow diagram to a state 

diagram
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3.5.4 Step4 : Rules for 

Converting Flow Chart to 

State Diagram

• Rule1 : Action block in flow 

diagram state in the state diagram

action1

action2

condition

Yes

No action1

action2

condition

condition
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Example
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3.5.4 Step4 : Rules for 

Converting Flow Chart to 

State Diagram(cont‘d)

• Rule2: the branching conditions for a 

state are derived by tracing through all 

possible decision paths from the given 

action block to all possible other 

action blocks

action1

action2

condition

Yes

No action1

action2

condition

condition
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Example
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3.5.4 Step4 : Rules for 

Converting Flow Chart to 

State Diagram(cont‘d)

• Rule3: Avoid making branching 

decisions on more than one 

asynchronous variable at a time

A

Data

Skip

term

B C

N

N

N

Y

Y

Y

A

B C

Data'+skip

Data.Skip'.term'

Data.Skip'.term
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3.5.4 Step4 : Rules for 

Converting Flow Chart to 

State Diagram(cont‘d)

• Rule3: Avoid making branching 

decisions on more than one 

asynchronous variable at a time

A

Data

Skip

term

B C

N

N

N

Y

Y

D

B C

term'term

D

A

Data'+skip

Data.skip'
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3.5.5 Step5: Complete the 

Design of the Controller

• Complications:

• Short/brief input pulses

• Asynchronous inputs

• Avoid glitches in the outputs

• Debug and testability features

• Design steps:

• Select a controller architecture

• Deal with synchronous problems

• Select a clock frequency

• Find a suitable state assignment

• Use a state map

• Implement the next state maps

• Plot next state maps

• Design the output decoder

• Plot output maps (if necessary)

• Produce an output list
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3.5.6 Step6 : Finalize the Design

Controller  Data Path Interface

controller

data in

internal
control
signal

data path

data out

external
control
signal

internal
status
signal

external
status
signal
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3.5.7 Step7: Simulation and 

Hardware Implementation
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3.6 An Example: pop machine 

controller

• Requirement:

• Pop machine capable of automatically 

dispensing soda pop at 75 cents per 

can and make proper change for coin 

sequences comprising nickels, dimes, 

quarters. The new machine use 

existing inventory including coin 

receiver, coin changer, and pop drop 

mechanism. These three given 

subsystems are to be controlled by a 

newly designed digital controller. 
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3.6.1 Specs
• Constrains:

• Must operate out of doors

• Must operate in an electrically noisy 
environment

• Mean time between failures > 2 months

• Hardware constraints : coin receiver, coin 
changer and pop-drop mechanism have 
already been chosen.

pop-drop

pop
ready

drop

changer

change
ready

eject

receiver

manual
coin

release

coin drop

coin present

quarter

nickle

dime

clear (L)
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3.6.1 Specs (cont‘d)

• Time Specs for the coin receiver

quarter

nickle

dime

coin present

• Time Specs for the coin changer

eject

change ready
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3.6.2 Roughly Define System 

Operation

pop-drop

Coin
Changer

Coin
Receiver

System
Controller

Start

Coin

received

ACC

ACC >= 75

ACC= 75

Drop POP
clear ACC

return nickle and

reduce ACC

N

N

NY

Y

Y
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3.6.2 Roughly Block Diagram 

for the Data Path

Combinational
logic

Adder

Coin receiver

Coin type

Coin value

Register

Comparator

75

A>B

A=B

A<B
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3.6.3 Refined Data Path

Combinational
logic

Adder

Coin type

Coin value

Register

Comparator

75

A>B

A=B

A<B

Coin Receiver
Clear
Drop coin
coin Present

counter
Load
Clear
Count Down



244

3.6.4 Develop a detailed 

specification for the controller

Start

Coin

present

a

coin
present

b

c

ACC<75

ACC>75

d f

 pop drop
ready

e

Clear ACC, drop pop

change
ready

N

Y

Y

N

Y

N

N

N

N

f
dec ACC by nickle
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3.6.5 Complete the Design of 

Controller

a

b

c

d

e

f

g

coin present

coin present

coin present

coin present
ACC < 75

ACC > 75ACC = 75

change ready

change ready

pop drop ready

pop drop ready
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3.6.6 Finalize the Design: 

Controller Data Path Interface

Data Path
Control

path

<75

=75

>75

clear ACC

DEC ACC

coin
receiver

coin
changer

pop drop

drop_pop

drop_ready

change_ready

return nickle

clear

coin present

drop coin

coin signal

coin present
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3.6.7 VHDL Implementation
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3.6.7 Digital Design 

a

b

c

d

e

f

g

coin present

coin present

coin present

coin present
ACC < 75

ACC > 75ACC = 75

change ready

change ready

pop drop ready

pop drop ready

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C
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3.6.7 Digital Design 

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C

00 01 11 10

0

1

AB
C
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