V. Digital System Testing

5. Digital System Testing

5.1 Introduction to Digital System Testing

- 5.2 Fault and Fault Models
- 5.3 Boundary Scan

5.1 Introduction to Digital System Testing

- Highlight of IC
 - LSI (1000), VLSI (100000) ULSI (1M)
 - Circuit densities: doubling every 18 month
 - Reliability up better testing
 - Cost Down
 - Yield up
- Testing
 - Main purpose of fault testing is the detection of malfunctions
 - Location of the fault may also be desired

- Why test IC
 - To verify design
 - To detect faults arising from manufacture or ware-out
 - To ensure components meet design specification (parameter)
- Cost of Testing
 - IC \$X
 - PCB board \$ 10X
 - System \$ 100X
 - Test cost > 50% production cost

- Verification
 - A design is checked to meet the requirement and specifications
 - Functions test checks that the circuit implement the functions that is required, and does not implement the function that is not required
- Factors
 - Original design specifications
 - Delays, hazards
 - Routing, layout design rules
- Tools
 - Simulators : logic, timing, functions behavioral
 - HDL, VHDL

- Testability
 - Observability: the internal signals can be determined at the output
 - Controllability: producing an internal signal value by applying signals to inputs
- Testing method
 - Off-line: external + BIT(built in test)
 - On-line: BIT (built-in test)
 - Example
- Structural testing

- Ideal Testing Environment
 - Store the truth table of the circuit
 - Apply all possible input combinations
 - Examine the output responses
- Real testing environment
 - Fault modeling
 - Model physical detects by a small number of faults
 - Test pattern generation
 - Generate a test pattern
 - Output response analysis
 - Analyze the circuit output without storing al the circuit responses
- Fault coverage
 - Number of detected faults/ number of faults modeled

5.2 Fault and Fault Models

• Before testing takes place, it is necessary to examine failure mechanisms, their effects and methods of modeling them

5.2 Fault and Fault Models (cont'd)

- Fault characteristics:
 - Permanent fault– fault in existence long enough to be observed at test time
 - Transient fault: fault appears and disappears in short intervals of time
 - Intermittent fault: fault which appears and disappears at regular time intervals
- Faults models
 - A logical abstraction describing the functional effects of a physical failure
 - Different levels of modeling are used based on different primitives
 - Block: functional model, block diagram (data-path)
 - Gate: switching level, gates and latches
 - Circuit: electrical model, use transistors, resistors capacitors
 - Geometrical-model: layout description of chip .. 259

5.2.1 Stuck at Fault Model

- Most commonly used fault model
- May consider single or multiple stuckat-faults
- The effect of the fault is modeled by having a line segment stuck at 0 or 1
 - All gates are perfect, problem may occur on line segments.
 - Single stuck at fault (SSF)
 - Example:
 - {x1,x2,x3} : inputs {1 2 3,4,5,6,7,8} : line segment number, F : correct output function, F* incorrect output function

5.2.1 Undetectable Faults

• Undetectable fault: its effect cannot be seen at the output, no matter what test pattern is applied

- Problem: redundancy may lead to undetectability
 - Why redundancy?
 - How to detect?
 - Undetectable faults may lead to problems in detecting other detectable faults

5.2.1 Equivalent Faults

- What is equivalent faults?
- Example1:

• Example 2:

5.2.1 Equivalent Faults (cont'd)

- What is equivalent faults?
- Example1:

• Example 2:

5.2.1 Equivalent Faults (cont'd)

5.2.2 Determine Test Pattern Generation

- Find a test vector for a given fault
 - Fault propagation
 - Path sensitization and backtracking

- 1/0:1234=1101,1111,1100
- 3/0:1234=1110
- 3/1:1234=1100
- 4/0: 1234 = 1111
- 6/1 : 1234 =
- For each of the test faults, find the test vectors
- Remove the redundant one, find the minimum set

5.2.2 Determine Test Pattern Generation (cont'd)

Fault equivalence depends on individual gates

- AND any input/0 $\leftarrow \rightarrow$ output/0
- Or any input/1 $\leftarrow \rightarrow$ output/1
- NAND any input/0 $\leftarrow \rightarrow$ output/1
- NOR any input/1 $\leftarrow \rightarrow$ output/0
- NOT any input/0 $\leftarrow \rightarrow$ output/1
- any input/1 \leftarrow >output/0

5.2.2 Determine Test Pattern Generation (ATPG)

- Given a circuit of n line segments
 - There are 2n single stuck at faults
 - Fault collapsing reduces 2n faults to k faults
 - For each of the k faults, find a test vectors
 - Find a minimal test set from the test vectors that detect the k faults
- Advantages:
 - Short test length
 - 100% fault coverage
- Disadvantages:
 - very computational expensive
 - Need to store test vectors

5.2.3 Pseudorandom Test Pattern Generation

• Using an autonomous linear feedback shift register (ALFSR)

 $\mathbf{P}(\mathbf{X}) = \mathbf{X}^3 + \mathbf{X} + 1$

Time	So	S 1	S2
T1	0	0	1
T2	1	1	0
T3	0	1	1
T4	1	1	1
T5	1	0	1
T6	1	0	0
T7	0	1	0

5.2.3 Pseudorandom Test Pattern Generation (cont'd)

- Given a degree n P(X) in binary field
 - Degree $n \rightarrow n$ stage ALFSR
 - If an ALFSR cycles through all 2ⁿ-1 non zero states, it has the maximum length cycle, the corresponding P(x) is primitive. Otherwise, it is non primitive
 - Example :
 - $P(x) = X^7 + X^3 + X^2 + 1$
 - Pseudorandom Test Pattern Generation (PTPG)
 - Advantages: easy to generate
 - No need for storage
 - Suitable for built-in self test
 - Disadvantages:
 - Relative long test length
 - Some faults may not be tested?
- Solution
 - DO PTPG cover 90-95%
 - DO ATPG cover rest

5.2.4 An Off-line Test (signature analysis)

5.2.4 An Off-line Test (Cont'd)

• Example

 $F = AB + \overline{B}C$

5.2.4 An Off-line Test (Cont'd) example

Time	So	S 1	S2	f
T1	0	0	1	1
T2	1	1	0	1
T3	0	1	1	0
T4	1	1	1	1
T5	1	0	1	1
T6	1	0	0	0

• At T6, s0s1s2=111 is a fault free signature₂₇₃

Time	So	S 1	S2	f
T1	0	0	1	1
T2	1	1	0	1
T3	0	1	1	0
T4	1	1	1	1
T5	1	0	1	1
T6	1	0	0	1

5.2.4 An Off-line Test (Cont'd) example

- At T6, s0s1s2=011 is a fault signature
- Fault is detected.

Time	f	So	S 1	S2
T0		0	0	0
T1	1	1	0	0
T2	1	1	1	0
T3	0	0	1	1
T4	1	0	1	1
T5	1	0	0	1
T6	1	0	1	1

5.3 Boundary Scan

- A design and test technique that allows circuits to be tested via the board edge connectors
 - I/O hardware is modified in design to incorporate a programmable shift register
 - Overhead minimal as it uses some empty space around I/O pads
- Problems of board test
 - Increasing IC complexity
 - Increasing use of surface-mount technology

5.3 Boundary Scan (cont'd)

• Inclusion of programmable shift register stage adjacent to each I/O pin such that signals at component boundaries can be controlled and observed using scan testing principles

