
1

Unit 6. Writing Testbenches

6.1 The Importance of Verification

6.2 Verification Tools

6.2.1 Logic Simulation Overview

6.2.2 True Value Simulation

6.2.3 Event-Driven Simulation

6.3 Behavioral HDL

6.4 Writing Testbenches

2

6.1 The Importance of

Verification

• Verification is a process used to
demonstrate the functional correctness
of a design.

• Verification is not a testbench, nor is it
a series of testbenches.

What is a testbench?

• The term “testbench”, in VHDL and Verilog,
usually refers to the code used to create a
pre-determined input sequence to a design,
then optionally observe the response.

Design under

Verification

Testbench

6.1 The Importance of

Verification (cont’d)

• Verification consumes about 70% of

the design effort.

• Verification is on critical path.

• Verification time can be reduced

through parallelism. To parallelize the

verification effort, it is necessary to be

able to write-and debug- testbenches

in parallel with each other as well as in

parallel with the implementation of the

design.

• Using abstraction reduces control over

low-level details. Verification time can

be reduced through automation.

3

4

6.2: Verification Tools

Different kinds of verification tools can

be used to verify different aspect of the

design and identify different types of

errors.

- Linting tools

- Simulators

- Waveform viewers

- Code coverage analysis

- Revision control and issue tracking

Simulator

- A tool for design verification testing;

- Ascertain a design perform its

specified behavior (function and

timing)

Logic Simulation Overview

5

6.2.1 Logic Simulation

Overview

Netlist: a format (or language) that

describes a design as an interconnection

of modules. Netlist may use hierarchy.

Modules, blocks or components

described by:

• I/O functions

• Delays associated with I/O signals

• Examples: FET, resistors,

capacitors, gates, adder etc.

Interconnectors represent:

• Ideal signal carriers or ideal

electrical conductors

6

7

6.2.2 True Value Simulation

Determine the output for certain inputs

Find design errors, timing problems, etc.

Limitations:

• The set of design errors is not enumerable

• No formal procedure to generate tests

• A system passes the test is shown correct

only with the applied test cases

• Simplified circuit model

• A circuit passes the simulation test may

not work when being wired up

8

6.2.2 True Value Simulation

(cont’d)

Timing :delay models in VHDL

• Transport delays

• Initial delays

A B

A

B1

B2

Transport delay:

• Model transmission lines.

• Line_out <= transport line_in after

3 ns;

• Remarks: Output is assigned with

specified delay independently from

the width of the pulse in waveform.

9

Line_in

Line_out

Inertial delay (default):

• Model the devices. Default delay

model implemented in VHDL.

• Line_out <= inertial not line_in after

3 ns;

• Line_out <= not line_in after 3 ns;

• Line_out <= reject 500ps inertial not

line_in after 3 ns;

• Remarks: Impulses shorter than the

specified switching time are not

transmitted.

10

Line_in

Line_out

11

• General concept behind most

simulation algorithms

• An event represents a change in the

value of a signal line at some

simulated time t

• If the value of a signal line x changes,

then all gates having x as input are

activated

• If the activated gates change their

output values, new events are

generated.

6.2.3 Event-driven Simulation

12

6.2.2 Event_driven Simulation

(cont’d)

• An event list can be organized as a

linked list stored in increasing time

order

t1 t2 t3 ...

event
list

...

C,
val

d,
val

f,
val

13

6.2.2 Event_driven Simulation (cont’d)

Two-pass algorithm for gate-level event-driven simulation

While(event_list is not empty) do begin

For (every event(x,val) at time t) do begin

Get the event (x,val)

If(current_val_of_x <>val) then begin
Current_val_of_x=val

For (each gate J on fanout list of x) do begin

Change the value of fanout line going into gate J

Add gate J to activated_gates

End

End

End

For (each gate J of activated_gates) do begin

Compute output value of gate J

If(output_value_gate_j <> last_scheduled_value_gate_j) then

begin

Schedule (output_line_number_gate_J,output_value_gate_J)

for time t+delay of gate_J

Last scheduled_value_gate_J=output_value_gate_J

End

End

End

14

6.2.2 Event_driven Simulation (cont’d)

• Pass1

• Get the entries from

the event list

associated with the

current time t

• Determine the

activated gates

• This is to avoid

multiple

evaluations of a

gate that is

activated by more

than one event

• Pass2

• Compute the new

output values of the

activated gates

• Schedule their

computed value in

the event list

• The algorithm

keeps track of the

last-scheduled

value of a gate so

as to schedule only

“true” events

15

6.2.2 Event_driven Simulation

(cont’d): an Example

1
2

3

5

6

74

A

C

B

X1

X2

X3

Gate A B C

Propagation delay 10 ns 6 ns 10 ns

16

6.2.2 Event_driven Simulation

(cont’d): an Example

Phase 1 phase2

Line values Gates

affected

Scheduled

events

Time 1 2 3 4 5 6 7 A B C

Init 1 0 1 0 1 0 1

4 0 X (5,0) at 4+10

6 1 0 1 X X (5,1) at 6+10

14 0 X (7,0) at 14+10

16 1 X (7,1) at 16+10

24 0

26 1

28 1 X

17

Event_driven Simulation (cont’d): an

Example

4 6 28

Initial t=0

1,
0

3,
0

2,
1

1,
1

18

Event_driven Simulation (cont’d): an

Example

6 14 28

 t=4

5,
0

1,
1

3,
0

2,
1

19

Event_driven Simulation (cont’d): an

Example

14 16 28

Initial t=6

5,
0

5,
1

1,
1

20

Event_driven Simulation (cont’d): an

Example

16 24 28

Initial t=14

5,
1

7,
0

1,
1

21

Event_driven Simulation (cont’d): an

Example

24 26 28

Initial t=16

7,
0

7,
1

1,
1

22

Event_driven Simulation (cont’d): an

Example

26 28 28

t=24

7,
1

1,
1

1,
1

t=26

23

Event_driven Simulation (cont’d):

Timing Diagram

X1

X2

X3

X4

X5

X6

X7

t4 t8 t12 t20 t28

24

6.3: Behavioral HDL

To maintain

simulation behavior:

- All inputs must be

listed in the

sensitivity list of a

combinational

block;

- The clock and

asynchronous reset

must be in the

sensitivity list of a

sequential block.

To avoid undesirable

hardware structures:

- To avoid latches,

set all outputs of

combinational

blocks to default

values at the

beginning of the

block;

- To avoid tristate

buffers, do not

assign the value

‘Z’.

RTL coding guidelines help designer

obtain efficient implementations: low area,

high speed, or low power.

Example: State diagram for handshaking protocol

Behavioral VHDL:

process

begin

…

REQ <= ‘1’;

Wait until ACK = ‘1’;

REQ <= ‘0’;

Wait until ACK = ‘0’;

…

end process;

25

REQ=1 REQ=0
ACK=1

ACK=0 ACK=1

ACK=0

Synthesizable VHDL code

Type state_typ is (…, make_req, release,…);

Signal state, next_state: state_typ;

COMB: process (state, ACK)

begin

next_state <= state;

case state is

…

when make_req =>

Req <= ‘1’;

if ACK =‘1’ then

Next_state <= release;

end if;

when release =>

Req <= ‘0’;

if ACK =‘0’ then

Next_sate <=…;

end if;

…

end case;

end process COMB;

26

SEQ: process (CLK)

begin

if clk’event and clk=‘1’ then

if reset =‘1’ then

state <= …;

else

state <= next_state;

end if;

end if;

end process SEQ;

Connectivity, Time and

Concurrency

• Connectivity is the ability of

describing a design using simpler

blocks then connecting them

together.

• Time is the ability to represent how

the internal state of a design evolves

over time.

• Concurrency is the ability to

describe actions that occur at the

same time, independently of each

other.

27

28

6.4 Writing Test-Benches

- Generating a Simple Waveform

……

constant clk_period : time := 1 ns;

process

begin

clk <= ‘0’;

wait for clk_period/2;

clk<= ‘1’;

wait for clk_period/2;

end process;

29

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_signed.all;

ENTITY testbench IS

END testbench;

ARCHITECTURE Behavior OF testbench IS

COMPONENT Addern

PORT (X, Y : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

Cin : IN STD_LOGIC;

S : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);

Cout : OUT STD_LOGIC);

END COMPONENT;

SIGNAL Cin : STD_LOGIC;

SIGNAL X : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL Y : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL S : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL Cout : STD_LOGIC;

BEGIN

vectors: PROCESS

BEGIN

X <= X"0000"; Y <= X"0000"; Cin <= '0';

WAIT FOR 20 ns;

Y <= X"000A"; Cin <= '0';

WAIT FOR 20 ns;

X <= X"000A"; Cin <= '0';

WAIT FOR 20 ns;

Cin <= '1';

WAIT FOR 20 ns;

X <= X"FFF0"; Y <= X"000F"; Cin <= '0';

WAIT FOR 20 ns;

Cin <= '1';

WAIT;

END PROCESS;

U1: Addern PORT MAP (X, Y, Cin, S, Cout);

END;

30

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_signed.all;

ENTITY testbench IS

END testbench;

ARCHITECTURE Behavior OF testbench IS

COMPONENT Accumulate

PORT (KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);

SW : IN STD_LOGIC_VECTOR(9 DOWNTO 0);

CLOCK_50 : IN STD_LOGIC;

LEDR : OUT STD_LOGIC_VECTOR(9 DOWNTO 0));

END COMPONENT;

SIGNAL CLOCK_50 : STD_LOGIC;

SIGNAL KEY : STD_LOGIC_VECTOR(0 DOWNTO 0);

SIGNAL SW : STD_LOGIC_VECTOR(9 DOWNTO 0);

SIGNAL LEDR : STD_LOGIC_VECTOR(9 DOWNTO 0);

BEGIN

U1: Accumulate PORT MAP (KEY, SW, CLOCK_50, LEDR);

clock_process: PROCESS

BEGIN

CLOCK_50 <= '0';

WAIT FOR 10 ns;

CLOCK_50 <= '1';

WAIT FOR 10 ns;

END PROCESS;

vectors: PROCESS

BEGIN

KEY(0) <= '0'; SW <= "0000000000";

WAIT FOR 20 ns;

SW(9 DOWNTO 5) <= "01010";

WAIT FOR 20 ns;

SW(4 DOWNTO 0) <= "11110";

KEY(0) <= '1';

WAIT;

END PROCESS;

31

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_signed.all;

ENTITY testbench IS

END testbench;

ARCHITECTURE Behavior OF testbench IS

COMPONENT display

PORT (KEY : IN STD_LOGIC_VECTOR(0 DOWNTO 0);

SW : IN STD_LOGIC_VECTOR(0 DOWNTO 0);

HEX0 : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

LEDR : OUT STD_LOGIC_VECTOR(9 DOWNTO 0));

END COMPONENT;

SIGNAL KEY : STD_LOGIC_VECTOR(0 DOWNTO 0);

SIGNAL SW : STD_LOGIC_VECTOR(0 DOWNTO 0);

SIGNAL HEX0 : STD_LOGIC_VECTOR(6 DOWNTO 0);

SIGNAL LEDR : STD_LOGIC_VECTOR(9 DOWNTO 0);

BEGIN

U1: display PORT MAP (KEY, SW, HEX0, LEDR);

clock_process: PROCESS

BEGIN

KEY(0) <= '0';

WAIT FOR 10 ns;

KEY(0) <= '1';

WAIT FOR 10 ns;

END PROCESS;

vectors: PROCESS

BEGIN

SW(0) <= '0'; -- Resetn = 0

WAIT FOR 20 ns;

SW(0) <= '1'; -- Resetn = 1

WAIT;

END PROCESS;

END;

